Cargando…
Highly Dense FBG Temperature Sensor Assisted with Deep Learning Algorithms
In this paper, we demonstrate the application of deep neural networks (DNNs) for processing the reflectance spectrum from a fiberoptic temperature sensor composed of densely inscribed fiber bragg gratings (FBG). Such sensors are commonly avoided in practice since close arrangement of short FBGs resu...
Autores principales: | Kokhanovskiy, Alexey, Shabalov, Nikita, Dostovalov, Alexandr, Wolf, Alexey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473129/ https://www.ncbi.nlm.nih.gov/pubmed/34577392 http://dx.doi.org/10.3390/s21186188 |
Ejemplares similares
-
2D Temperature Field Reconstruction Using Optical Frequency Domain Reflectometry and Machine-Learning Algorithms
por: Wolf, Alexey, et al.
Publicado: (2022) -
Deep reinforcement learning for self-tuning laser source of dissipative solitons
por: Kuprikov, Evgeny, et al.
Publicado: (2022) -
Pressure Membrane FBG Sensor Realized by 3D Technology
por: Fajkus, Marcel, et al.
Publicado: (2021) -
High-Density Distributed Crack Tip Sensing System Using Dense Ultra-Short FBG Sensors
por: Gui, Xin, et al.
Publicado: (2019) -
Fibre Optic FBG Sensors for Monitoring of the Temperature of the Building Envelope
por: Juraszek, Janusz, et al.
Publicado: (2021)