Cargando…
Camera Assisted Roadside Monitoring for Invasive Alien Plant Species Using Deep Learning
Invasive alien plant species (IAPS) pose a threat to biodiversity as they propagate and outcompete natural vegetation. In this study, a system for monitoring IAPS on the roadside is presented. The system consists of a camera that acquires images at high speed mounted on a vehicle that follows the tr...
Autores principales: | Dyrmann, Mads, Mortensen, Anders Krogh, Linneberg, Lars, Høye, Toke Thomas, Bjerge, Kim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473160/ https://www.ncbi.nlm.nih.gov/pubmed/34577335 http://dx.doi.org/10.3390/s21186126 |
Ejemplares similares
-
Accurate image-based identification of macroinvertebrate specimens using deep learning—How much training data is needed?
por: Høye, Toke T., et al.
Publicado: (2022) -
Alien plant species on roadsides of the northwestern Patagonian steppe (Argentina)
por: Chichizola, Giselle Ailin, et al.
Publicado: (2021) -
An Automated Light Trap to Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning
por: Bjerge, Kim, et al.
Publicado: (2021) -
Competition for roadside camera monocular 3D object detection
por: Jia, Jinrang, et al.
Publicado: (2023) -
Robust Target Detection and Tracking Algorithm Based on Roadside Radar and Camera
por: Bai, Jie, et al.
Publicado: (2021)