Cargando…
A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network
Power system planning and expansion start with forecasting the anticipated future load requirement. Load forecasting is essential for the engineering perspective and a financial perspective. It effectively plays a vital role in the conventional monopolistic operation and electrical utility planning...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473180/ https://www.ncbi.nlm.nih.gov/pubmed/34577447 http://dx.doi.org/10.3390/s21186240 |
_version_ | 1784574924986253312 |
---|---|
author | Alhmoud, Lina Abu Khurma, Ruba Al-Zoubi, Ala’ M. Aljarah, Ibrahim |
author_facet | Alhmoud, Lina Abu Khurma, Ruba Al-Zoubi, Ala’ M. Aljarah, Ibrahim |
author_sort | Alhmoud, Lina |
collection | PubMed |
description | Power system planning and expansion start with forecasting the anticipated future load requirement. Load forecasting is essential for the engineering perspective and a financial perspective. It effectively plays a vital role in the conventional monopolistic operation and electrical utility planning to enhance power system operation, security, stability, minimization of operation cost, and zero emissions. Two Well-developed cases are discussed here to quantify the benefits of additional models, observation, resolution, data type, and how data are necessary for the perception and evolution of the electrical load forecasting in Jordan. Actual load data for more than a year is obtained from the leading electricity company in Jordan. These cases are based on total daily demand and hourly daily demand. This work’s main aim is for easy and accurate computation of week ahead electrical system load forecasting based on Jordan’s current load measurements. The uncertainties in forecasting have the potential to waste money and resources. This research proposes an optimized multi-layered feed-forward neural network using the recent Grey Wolf Optimizer (GWO). The problem of power forecasting is formulated as a minimization problem. The experimental results are compared with popular optimization methods and show that the proposed method provides very competitive forecasting results. |
format | Online Article Text |
id | pubmed-8473180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84731802021-09-28 A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network Alhmoud, Lina Abu Khurma, Ruba Al-Zoubi, Ala’ M. Aljarah, Ibrahim Sensors (Basel) Article Power system planning and expansion start with forecasting the anticipated future load requirement. Load forecasting is essential for the engineering perspective and a financial perspective. It effectively plays a vital role in the conventional monopolistic operation and electrical utility planning to enhance power system operation, security, stability, minimization of operation cost, and zero emissions. Two Well-developed cases are discussed here to quantify the benefits of additional models, observation, resolution, data type, and how data are necessary for the perception and evolution of the electrical load forecasting in Jordan. Actual load data for more than a year is obtained from the leading electricity company in Jordan. These cases are based on total daily demand and hourly daily demand. This work’s main aim is for easy and accurate computation of week ahead electrical system load forecasting based on Jordan’s current load measurements. The uncertainties in forecasting have the potential to waste money and resources. This research proposes an optimized multi-layered feed-forward neural network using the recent Grey Wolf Optimizer (GWO). The problem of power forecasting is formulated as a minimization problem. The experimental results are compared with popular optimization methods and show that the proposed method provides very competitive forecasting results. MDPI 2021-09-17 /pmc/articles/PMC8473180/ /pubmed/34577447 http://dx.doi.org/10.3390/s21186240 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alhmoud, Lina Abu Khurma, Ruba Al-Zoubi, Ala’ M. Aljarah, Ibrahim A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network |
title | A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network |
title_full | A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network |
title_fullStr | A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network |
title_full_unstemmed | A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network |
title_short | A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network |
title_sort | real-time electrical load forecasting in jordan using an enhanced evolutionary feedforward neural network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473180/ https://www.ncbi.nlm.nih.gov/pubmed/34577447 http://dx.doi.org/10.3390/s21186240 |
work_keys_str_mv | AT alhmoudlina arealtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT abukhurmaruba arealtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT alzoubialam arealtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT aljarahibrahim arealtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT alhmoudlina realtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT abukhurmaruba realtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT alzoubialam realtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork AT aljarahibrahim realtimeelectricalloadforecastinginjordanusinganenhancedevolutionaryfeedforwardneuralnetwork |