Cargando…
EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features
Exposure to mental stress for long period leads to serious accidents and health problems. To avoid negative consequences on health and safety, it is very important to detect mental stress at its early stages, i.e., when it is still limited to acute or episodic stress. In this study, we developed an...
Autores principales: | Hag, Ala, Handayani, Dini, Pillai, Thulasyammal, Mantoro, Teddy, Kit, Mun Hou, Al-Shargie, Fares |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473213/ https://www.ncbi.nlm.nih.gov/pubmed/34577505 http://dx.doi.org/10.3390/s21186300 |
Ejemplares similares
-
Enhancing EEG-Based Mental Stress State Recognition Using an Improved Hybrid Feature Selection Algorithm
por: Hag, Ala, et al.
Publicado: (2021) -
Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters
por: Hag, Ala, et al.
Publicado: (2023) -
Electroencephalogram (EEG) dataset with porn addiction and healthy teenagers under rest and executive function task
por: Kang, Xiaoxi, et al.
Publicado: (2021) -
A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification
por: Gursel Ozmen, Nurhan, et al.
Publicado: (2018) -
Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains
por: Al-Fahoum, Amjed S., et al.
Publicado: (2014)