Cargando…
Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration
Current research in the field of aviation considers actively controlled high-lift structures for future civil airplanes. Therefore, pressure data must be acquired from the airfoil surface without influencing the flow due to sensor application. For experiments in the wind and water tunnel, as well as...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473241/ https://www.ncbi.nlm.nih.gov/pubmed/34577355 http://dx.doi.org/10.3390/s21186140 |
_version_ | 1784574941328310272 |
---|---|
author | Haus, Jan Niklas Schwerter, Martin Schneider, Michael Gäding, Marcel Leester-Schädel, Monika Schmid, Ulrich Dietzel, Andreas |
author_facet | Haus, Jan Niklas Schwerter, Martin Schneider, Michael Gäding, Marcel Leester-Schädel, Monika Schmid, Ulrich Dietzel, Andreas |
author_sort | Haus, Jan Niklas |
collection | PubMed |
description | Current research in the field of aviation considers actively controlled high-lift structures for future civil airplanes. Therefore, pressure data must be acquired from the airfoil surface without influencing the flow due to sensor application. For experiments in the wind and water tunnel, as well as for the actual application, the requirements for the quality of the airfoil surface are demanding. Consequently, a new class of sensors is required, which can be flush-integrated into the airfoil surface, may be used under wet conditions—even under water—and should withstand the harsh environment of a high-lift scenario. A new miniature silicon on insulator (SOI)-based MEMS pressure sensor, which allows integration into airfoils in a flip-chip configuration, is presented. An internal, highly doped silicon wiring with “butterfly” geometry combined with through glass via (TGV) technology enables a watertight and application-suitable chip-scale-package (CSP). The chips were produced by reliable batch microfabrication including femtosecond laser processes at the wafer-level. Sensor characterization demonstrates a high resolution of 38 mVV(−1) bar(−1). The stepless ultra-smooth and electrically passivated sensor surface can be coated with thin surface protection layers to further enhance robustness against harsh environments. Accordingly, protective coatings of amorphous hydrogenated silicon nitride (a-SiN:H) and amorphous hydrogenated silicon carbide (a-SiC:H) were investigated in experiments simulating environments with high-velocity impacting particles. Topographic damage quantification demonstrates the superior robustness of a-SiC:H coatings and validates their applicability to future sensors. |
format | Online Article Text |
id | pubmed-8473241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84732412021-09-28 Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration Haus, Jan Niklas Schwerter, Martin Schneider, Michael Gäding, Marcel Leester-Schädel, Monika Schmid, Ulrich Dietzel, Andreas Sensors (Basel) Article Current research in the field of aviation considers actively controlled high-lift structures for future civil airplanes. Therefore, pressure data must be acquired from the airfoil surface without influencing the flow due to sensor application. For experiments in the wind and water tunnel, as well as for the actual application, the requirements for the quality of the airfoil surface are demanding. Consequently, a new class of sensors is required, which can be flush-integrated into the airfoil surface, may be used under wet conditions—even under water—and should withstand the harsh environment of a high-lift scenario. A new miniature silicon on insulator (SOI)-based MEMS pressure sensor, which allows integration into airfoils in a flip-chip configuration, is presented. An internal, highly doped silicon wiring with “butterfly” geometry combined with through glass via (TGV) technology enables a watertight and application-suitable chip-scale-package (CSP). The chips were produced by reliable batch microfabrication including femtosecond laser processes at the wafer-level. Sensor characterization demonstrates a high resolution of 38 mVV(−1) bar(−1). The stepless ultra-smooth and electrically passivated sensor surface can be coated with thin surface protection layers to further enhance robustness against harsh environments. Accordingly, protective coatings of amorphous hydrogenated silicon nitride (a-SiN:H) and amorphous hydrogenated silicon carbide (a-SiC:H) were investigated in experiments simulating environments with high-velocity impacting particles. Topographic damage quantification demonstrates the superior robustness of a-SiC:H coatings and validates their applicability to future sensors. MDPI 2021-09-13 /pmc/articles/PMC8473241/ /pubmed/34577355 http://dx.doi.org/10.3390/s21186140 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Haus, Jan Niklas Schwerter, Martin Schneider, Michael Gäding, Marcel Leester-Schädel, Monika Schmid, Ulrich Dietzel, Andreas Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration |
title | Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration |
title_full | Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration |
title_fullStr | Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration |
title_full_unstemmed | Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration |
title_short | Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration |
title_sort | robust pressure sensor in soi technology with butterfly wiring for airfoil integration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473241/ https://www.ncbi.nlm.nih.gov/pubmed/34577355 http://dx.doi.org/10.3390/s21186140 |
work_keys_str_mv | AT hausjanniklas robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration AT schwertermartin robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration AT schneidermichael robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration AT gadingmarcel robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration AT leesterschadelmonika robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration AT schmidulrich robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration AT dietzelandreas robustpressuresensorinsoitechnologywithbutterflywiringforairfoilintegration |