Cargando…
A Fast Stereo Matching Network with Multi-Cross Attention
Stereo matching networks based on deep learning are widely developed and can obtain excellent disparity estimation. We present a new end-to-end fast deep learning stereo matching network in this work that aims to determine the corresponding disparity from two stereo image pairs. We extract the chara...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473250/ https://www.ncbi.nlm.nih.gov/pubmed/34577226 http://dx.doi.org/10.3390/s21186016 |
Sumario: | Stereo matching networks based on deep learning are widely developed and can obtain excellent disparity estimation. We present a new end-to-end fast deep learning stereo matching network in this work that aims to determine the corresponding disparity from two stereo image pairs. We extract the characteristics of the low-resolution feature images using the stacked hourglass structure feature extractor and build a multi-level detailed cost volume. We also use the edge of the left image to guide disparity optimization and sub-sample with the low-resolution data, ensuring excellent accuracy and speed at the same time. Furthermore, we design a multi-cross attention model for binocular stereo matching to improve the matching accuracy and achieve end-to-end disparity regression effectively. We evaluate our network on Scene Flow, KITTI2012, and KITTI2015 datasets, and the experimental results show that the speed and accuracy of our method are excellent. |
---|