Cargando…
A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification
Human motion analysis provides useful information for the diagnosis and recovery assessment of people suffering from pathologies, such as those affecting the way of walking, i.e., gait. With recent developments in deep learning, state-of-the-art performance can now be achieved using a single 2D-RGB-...
Autores principales: | Albuquerque, Pedro, Verlekar, Tanmay Tulsidas, Correia, Paulo Lobato, Soares, Luís Ducla |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473368/ https://www.ncbi.nlm.nih.gov/pubmed/34577408 http://dx.doi.org/10.3390/s21186202 |
Ejemplares similares
-
Remote Gait Type Classification System Using Markerless 2D Video
por: Albuquerque, Pedro, et al.
Publicado: (2021) -
Automatic Classification of Gait Impairments Using a Markerless 2D Video-Based System
por: Verlekar, Tanmay T., et al.
Publicado: (2018) -
ST-DeepGait: A Spatiotemporal Deep Learning Model for Human Gait Recognition
por: Konz, Latisha, et al.
Publicado: (2022) -
Deep-learning-based automatic segmentation and classification for craniopharyngiomas
por: Yan, Xiaorong, et al.
Publicado: (2023) -
Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders
por: Fricke, Christopher, et al.
Publicado: (2021)