Cargando…
Machine Learning Analysis for Phenolic Compound Monitoring Using a Mobile Phone-Based ECL Sensor
Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and ambiguity in key features. This study proposes a nov...
Autores principales: | Taylor, Joseph, Ccopa-Rivera, Elmer, Kim, Solomon, Campbell, Reise, Summerscales, Rodney, Kwon, Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473430/ https://www.ncbi.nlm.nih.gov/pubmed/34577213 http://dx.doi.org/10.3390/s21186004 |
Ejemplares similares
-
Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
por: Rivera, Elmer Ccopa, et al.
Publicado: (2020) -
Quenching Behavior of the Electrochemiluminescence of Ru(bpy)(3)
(2+)/TPrA System by Phenols on a Smartphone‐Based Sensor
por: Rivera, Elmer C., et al.
Publicado: (2021) -
Data-Driven Modeling of Smartphone-Based Electrochemiluminescence Sensor Data Using Artificial Intelligence
por: Ccopa Rivera, Elmer, et al.
Publicado: (2020) -
Physiology of the ECL cells.
por: Håkanson, R., et al.
Publicado: (1998) -
ECL cell morphology.
por: Chen, D., et al.
Publicado: (1998)