Cargando…
Comparing Deep Reinforcement Learning Algorithms’ Ability to Safely Navigate Challenging Waters
Reinforcement Learning (RL) controllers have proved to effectively tackle the dual objectives of path following and collision avoidance. However, finding which RL algorithm setup optimally trades off these two tasks is not necessarily easy. This work proposes a methodology to explore this that lever...
Autores principales: | Larsen, Thomas Nakken, Teigen, Halvor Ødegård, Laache, Torkel, Varagnolo, Damiano, Rasheed, Adil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473616/ https://www.ncbi.nlm.nih.gov/pubmed/34589522 http://dx.doi.org/10.3389/frobt.2021.738113 |
Ejemplares similares
-
Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles
por: Havenstrøm, Simen Theie, et al.
Publicado: (2021) -
Improved Jacobian matrix estimation applied to snake robots
por: Løwer, Jostein, et al.
Publicado: (2023) -
Editorial: Multi-robot systems for space applications
por: Pomares, Jorge, et al.
Publicado: (2023) -
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
por: Lambert, Reeve, et al.
Publicado: (2021) -
Traversability analysis with vision and terrain probing for safe legged robot navigation
por: Haddeler, Garen, et al.
Publicado: (2022)