Cargando…
Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis
BACKGROUND: Platinum‐based chemotherapy is effective in inducing shrinkage of primary lung cancer lesions; however, it shows finite therapeutic efficacy in patients suffering from brain metastasis (BM). The intrinsic changes of BM cells, which contribute to the poor results remain unknown. METHODS:...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473645/ https://www.ncbi.nlm.nih.gov/pubmed/34586745 http://dx.doi.org/10.1002/ctm2.517 |
_version_ | 1784575035702247424 |
---|---|
author | Liu, Wenwen Zhou, Yang Duan, Wenzhe Song, Jing Wei, Song Xia, Shengkai Wang, Yingyan Du, Xiaohui Li, Encheng Ren, Caixia Wang, Wei Zhan, Qimin Wang, Qi |
author_facet | Liu, Wenwen Zhou, Yang Duan, Wenzhe Song, Jing Wei, Song Xia, Shengkai Wang, Yingyan Du, Xiaohui Li, Encheng Ren, Caixia Wang, Wei Zhan, Qimin Wang, Qi |
author_sort | Liu, Wenwen |
collection | PubMed |
description | BACKGROUND: Platinum‐based chemotherapy is effective in inducing shrinkage of primary lung cancer lesions; however, it shows finite therapeutic efficacy in patients suffering from brain metastasis (BM). The intrinsic changes of BM cells, which contribute to the poor results remain unknown. METHODS: Platinum drug‐sensitivity was assessed by utilizing a preclinical BM model of PC9 lung adenocarcinoma cells in vitro and in vivo. High consumption of glutathione (GSH) and two associated upregulated proteins (GPX4 and GSTM1) in BM were identified by integrated metabolomics and proteomics in cell lines and verified by clinical serum sample. Gain‐of‐function and rescue experiments were implemented to reveal the impact and mechanism of GPX4 and GSTM1 on the chemosensitivity in BM. The interaction between GPX4 and GSTM1 was examined by immunoblotting and immunoprecipitation. The mechanism of upregulation of GPX4 was further uncovered by luciferase reporter assay, immunoprecipitation, and electrophoretic mobility shift assay. RESULTS: The derivative brain metastatic subpopulations (PC9‐BrMs) of parental cells PC9 developed obvious resistance to platinum. Radically altered profiles of BM metabolism and protein expression compared with primary lung cancer cells were described and GPX4 and GSTM1 were identified as being responsible for the high consumption of GSH, leading to decreased chemosensitivity by negatively regulating ferroptosis. Besides, GSTM1 was found regulated by GPX4, which was transcriptionally activated by the Wnt/NR2F2 signaling axis in BM. CONCLUSIONS: Collectively, our findings demonstrated that Wnt/NR2F2/GPX4 promoted acquired chemoresistance by suppressing ferroptosis with high consumption of GSH. GPX4 inhibitor was found to augment the anticancer effect of platinum drugs in lung cancer BM, providing novel strategies for lung cancer patients with BM. |
format | Online Article Text |
id | pubmed-8473645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84736452021-10-01 Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis Liu, Wenwen Zhou, Yang Duan, Wenzhe Song, Jing Wei, Song Xia, Shengkai Wang, Yingyan Du, Xiaohui Li, Encheng Ren, Caixia Wang, Wei Zhan, Qimin Wang, Qi Clin Transl Med Research Articles BACKGROUND: Platinum‐based chemotherapy is effective in inducing shrinkage of primary lung cancer lesions; however, it shows finite therapeutic efficacy in patients suffering from brain metastasis (BM). The intrinsic changes of BM cells, which contribute to the poor results remain unknown. METHODS: Platinum drug‐sensitivity was assessed by utilizing a preclinical BM model of PC9 lung adenocarcinoma cells in vitro and in vivo. High consumption of glutathione (GSH) and two associated upregulated proteins (GPX4 and GSTM1) in BM were identified by integrated metabolomics and proteomics in cell lines and verified by clinical serum sample. Gain‐of‐function and rescue experiments were implemented to reveal the impact and mechanism of GPX4 and GSTM1 on the chemosensitivity in BM. The interaction between GPX4 and GSTM1 was examined by immunoblotting and immunoprecipitation. The mechanism of upregulation of GPX4 was further uncovered by luciferase reporter assay, immunoprecipitation, and electrophoretic mobility shift assay. RESULTS: The derivative brain metastatic subpopulations (PC9‐BrMs) of parental cells PC9 developed obvious resistance to platinum. Radically altered profiles of BM metabolism and protein expression compared with primary lung cancer cells were described and GPX4 and GSTM1 were identified as being responsible for the high consumption of GSH, leading to decreased chemosensitivity by negatively regulating ferroptosis. Besides, GSTM1 was found regulated by GPX4, which was transcriptionally activated by the Wnt/NR2F2 signaling axis in BM. CONCLUSIONS: Collectively, our findings demonstrated that Wnt/NR2F2/GPX4 promoted acquired chemoresistance by suppressing ferroptosis with high consumption of GSH. GPX4 inhibitor was found to augment the anticancer effect of platinum drugs in lung cancer BM, providing novel strategies for lung cancer patients with BM. John Wiley and Sons Inc. 2021-09-26 /pmc/articles/PMC8473645/ /pubmed/34586745 http://dx.doi.org/10.1002/ctm2.517 Text en © 2021 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Liu, Wenwen Zhou, Yang Duan, Wenzhe Song, Jing Wei, Song Xia, Shengkai Wang, Yingyan Du, Xiaohui Li, Encheng Ren, Caixia Wang, Wei Zhan, Qimin Wang, Qi Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
title | Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
title_full | Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
title_fullStr | Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
title_full_unstemmed | Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
title_short | Glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
title_sort | glutathione peroxidase 4‐dependent glutathione high‐consumption drives acquired platinum chemoresistance in lung cancer‐derived brain metastasis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473645/ https://www.ncbi.nlm.nih.gov/pubmed/34586745 http://dx.doi.org/10.1002/ctm2.517 |
work_keys_str_mv | AT liuwenwen glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT zhouyang glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT duanwenzhe glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT songjing glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT weisong glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT xiashengkai glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT wangyingyan glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT duxiaohui glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT liencheng glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT rencaixia glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT wangwei glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT zhanqimin glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis AT wangqi glutathioneperoxidase4dependentglutathionehighconsumptiondrivesacquiredplatinumchemoresistanceinlungcancerderivedbrainmetastasis |