Cargando…

4.1N-Mediated Interactions and Functions in Nerve System and Cancer

Scaffolding protein 4.1N is a neuron-enriched 4.1 homologue. 4.1N contains three conserved domains, including the N-terminal 4.1-ezrin-radixin-moesin (FERM) domain, internal spectrin–actin–binding (SAB) domain, and C-terminal domain (CTD). Interspersed between the three domains are nonconserved doma...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qin, Liu, Jing, Wang, Zi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473747/
https://www.ncbi.nlm.nih.gov/pubmed/34589518
http://dx.doi.org/10.3389/fmolb.2021.711302
Descripción
Sumario:Scaffolding protein 4.1N is a neuron-enriched 4.1 homologue. 4.1N contains three conserved domains, including the N-terminal 4.1-ezrin-radixin-moesin (FERM) domain, internal spectrin–actin–binding (SAB) domain, and C-terminal domain (CTD). Interspersed between the three domains are nonconserved domains, including U1, U2, and U3. The role of 4.1N was first reported in the nerve system. Then, extensive studies reported the role of 4.1N in cancers and other diseases. 4.1N performs numerous vital functions in signaling transduction by interacting, locating, supporting, and coordinating different partners and is involved in the molecular pathogenesis of various diseases. In this review, recent studies on the interactions between 4.1N and its contactors (including the α7AChr, IP3R1, GluR1/4, GluK1/2/3, mGluR8, KCC2, D2/3Rs, CASK, NuMA, PIKE, IP6K2, CAM 1/3, βII spectrin, flotillin-1, pp1, and 14-3-3) and the 4.1N-related biological functions in the nerve system and cancers are specifically and comprehensively discussed. This review provides critical detailed mechanistic insights into the role of 4.1N in disease relationships.