Cargando…
Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation
Purpose: Neuroimaging has demonstrated altered static functional connectivity in patients with premature ejaculation (PE), while studies examining dynamic changes in spontaneous brain activity in PE patients are still lacking. We aimed to explore the reconfiguration of dynamic functional connectivit...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473781/ https://www.ncbi.nlm.nih.gov/pubmed/34588948 http://dx.doi.org/10.3389/fnins.2021.721236 |
_version_ | 1784575068176646144 |
---|---|
author | Lu, Jiaming Chen, Qian Li, Danyan Zhang, Wen Xing, Siyan Wang, Junxia Zhang, Xin Liu, Jiani Qing, Zhao Dai, Yutian Zhang, Bing |
author_facet | Lu, Jiaming Chen, Qian Li, Danyan Zhang, Wen Xing, Siyan Wang, Junxia Zhang, Xin Liu, Jiani Qing, Zhao Dai, Yutian Zhang, Bing |
author_sort | Lu, Jiaming |
collection | PubMed |
description | Purpose: Neuroimaging has demonstrated altered static functional connectivity in patients with premature ejaculation (PE), while studies examining dynamic changes in spontaneous brain activity in PE patients are still lacking. We aimed to explore the reconfiguration of dynamic functional connectivity (DFC) states in lifelong PE (LPE) patients and to distinguish LPE patients from normal controls (NCs) using a machine learning method based on DFC state features. Methods: Thirty-six LPE patients and 23 NCs were recruited. Resting-state functional magnetic resonance imaging (fMRI) data, the clinical rating scores on the Chinese Index of PE (CIPE), and intravaginal ejaculatory latency time (IELT) were collected from each participant. DFC was calculated by the sliding window approach. Finally, the Lagrangian support vector machine (LSVM) classifier was applied to distinguish LPE patients from NCs using the DFC parameters. Two DFC state metrics (reoccurrence times and transition frequencies) were introduced and we assessed the correlations between DFC state metrics and clinical variables, and the accuracy, sensitivity, and specificity of the LSVM classifier. Results: By k-means clustering, four distinct DFC states were identified. The LPE patients showed an increase in the reoccurrence times for state 3 (p < 0.05, Bonferroni corrected) but a decrease for state 1 (p < 0.05, Bonferroni corrected) compared to the NCs. Moreover, the LPE patients had significantly less frequent transitions between state 1 and state 4 (p < 0.05, uncorrected) while more frequent transitions between state 3 and state 4 (p < 0.05, uncorrected) than the NCs. The reoccurrence times and transition frequencies showed significant associations with the CIPE scores and IELTs. The accuracy, sensitivity, and specificity of the LSVM classifier were 90.35, 87.59, and 85.59%, respectively. Conclusion: LPE patients were more inclined to be in DFC states reinforced intra-network and inter-network connection. These features correlated with clinical syndromes and can classify the LPE patients from NCs. Our results of reconfiguration of DFC states may provide novel insights for the understanding of central etiology underlying LPE, indicate neuroimaging biomarkers for the evaluation of clinical severity of LPE. |
format | Online Article Text |
id | pubmed-8473781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84737812021-09-28 Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation Lu, Jiaming Chen, Qian Li, Danyan Zhang, Wen Xing, Siyan Wang, Junxia Zhang, Xin Liu, Jiani Qing, Zhao Dai, Yutian Zhang, Bing Front Neurosci Neuroscience Purpose: Neuroimaging has demonstrated altered static functional connectivity in patients with premature ejaculation (PE), while studies examining dynamic changes in spontaneous brain activity in PE patients are still lacking. We aimed to explore the reconfiguration of dynamic functional connectivity (DFC) states in lifelong PE (LPE) patients and to distinguish LPE patients from normal controls (NCs) using a machine learning method based on DFC state features. Methods: Thirty-six LPE patients and 23 NCs were recruited. Resting-state functional magnetic resonance imaging (fMRI) data, the clinical rating scores on the Chinese Index of PE (CIPE), and intravaginal ejaculatory latency time (IELT) were collected from each participant. DFC was calculated by the sliding window approach. Finally, the Lagrangian support vector machine (LSVM) classifier was applied to distinguish LPE patients from NCs using the DFC parameters. Two DFC state metrics (reoccurrence times and transition frequencies) were introduced and we assessed the correlations between DFC state metrics and clinical variables, and the accuracy, sensitivity, and specificity of the LSVM classifier. Results: By k-means clustering, four distinct DFC states were identified. The LPE patients showed an increase in the reoccurrence times for state 3 (p < 0.05, Bonferroni corrected) but a decrease for state 1 (p < 0.05, Bonferroni corrected) compared to the NCs. Moreover, the LPE patients had significantly less frequent transitions between state 1 and state 4 (p < 0.05, uncorrected) while more frequent transitions between state 3 and state 4 (p < 0.05, uncorrected) than the NCs. The reoccurrence times and transition frequencies showed significant associations with the CIPE scores and IELTs. The accuracy, sensitivity, and specificity of the LSVM classifier were 90.35, 87.59, and 85.59%, respectively. Conclusion: LPE patients were more inclined to be in DFC states reinforced intra-network and inter-network connection. These features correlated with clinical syndromes and can classify the LPE patients from NCs. Our results of reconfiguration of DFC states may provide novel insights for the understanding of central etiology underlying LPE, indicate neuroimaging biomarkers for the evaluation of clinical severity of LPE. Frontiers Media S.A. 2021-09-13 /pmc/articles/PMC8473781/ /pubmed/34588948 http://dx.doi.org/10.3389/fnins.2021.721236 Text en Copyright © 2021 Lu, Chen, Li, Zhang, Xing, Wang, Zhang, Liu, Qing, Dai and Zhang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Lu, Jiaming Chen, Qian Li, Danyan Zhang, Wen Xing, Siyan Wang, Junxia Zhang, Xin Liu, Jiani Qing, Zhao Dai, Yutian Zhang, Bing Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation |
title | Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation |
title_full | Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation |
title_fullStr | Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation |
title_full_unstemmed | Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation |
title_short | Reconfiguration of Dynamic Functional Connectivity States in Patients With Lifelong Premature Ejaculation |
title_sort | reconfiguration of dynamic functional connectivity states in patients with lifelong premature ejaculation |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473781/ https://www.ncbi.nlm.nih.gov/pubmed/34588948 http://dx.doi.org/10.3389/fnins.2021.721236 |
work_keys_str_mv | AT lujiaming reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT chenqian reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT lidanyan reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT zhangwen reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT xingsiyan reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT wangjunxia reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT zhangxin reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT liujiani reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT qingzhao reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT daiyutian reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation AT zhangbing reconfigurationofdynamicfunctionalconnectivitystatesinpatientswithlifelongprematureejaculation |