Cargando…
The first complete genome sequence of species Shewanella decolorationis, from a bioremediation competent strain Ni1-3
Shewanella decolorationis are Gram-negative γ-Proteobacteria with environmental bioremediation potential because they can perform anaerobic respiration using various types of pollutants as terminal electron acceptors. So far, three isolated and cultured strains of S. decolorationis have been reporte...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473976/ https://www.ncbi.nlm.nih.gov/pubmed/34568919 http://dx.doi.org/10.1093/g3journal/jkab261 |
Sumario: | Shewanella decolorationis are Gram-negative γ-Proteobacteria with environmental bioremediation potential because they can perform anaerobic respiration using various types of pollutants as terminal electron acceptors. So far, three isolated and cultured strains of S. decolorationis have been reported. However, no complete S. decolorationis genome has been published yet, which limited exploring their metabolism and feasibility in application. Here, S. decolorationis Ni1-3 isolated from an electroplating wastewater treatment plant showed strong reduction capabilities on azo dyes and oxidized metals. In order to construct the complete genome, high-quality whole-genome sequencing of strain Ni1-3 were performed by using both Nanopore MinION and Illumina NovaSeq platforms, from which the first complete genome of S. decolorationis was obtained by hybrid assembly. The genome of strain Ni1-3 contains a megaplasmid and a circular chromosome which encodes more proteins than that of the strains LDS1 and S12 belonging to the same species. In addition, more Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are identified in strain Ni1-3 genome. Importantly, 32 cytochrome-c and AzoR azoreductase coding genes are identified in the genome, which make strain Ni1-3 competent to degrade the azo dyes and versatile to bioremediate some other environmental pollution. The complete genome sequence of strain Ni1-3 can expand our knowledge toward its metabolic capabilities and potential, meanwhile, provide a reference to reassemble genomes of other S. decolorationis strains. |
---|