Cargando…

Spread of virus laden aerosols inside a moving sports utility vehicle with open windows: A numerical study

A three dimensional Computational Fluid Dynamics (CFD) model to study the dispersion of virus laden aerosols in a car moving with its windows open is reported. The aerosols are generated when a possibly infected passenger speaks. A sports utility vehicle having three rows of seats has been considere...

Descripción completa

Detalles Bibliográficos
Autores principales: Sen, Nirvik, Singh, K. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474020/
https://www.ncbi.nlm.nih.gov/pubmed/34588759
http://dx.doi.org/10.1063/5.0061753
Descripción
Sumario:A three dimensional Computational Fluid Dynamics (CFD) model to study the dispersion of virus laden aerosols in a car moving with its windows open is reported. The aerosols are generated when a possibly infected passenger speaks. A sports utility vehicle having three rows of seats has been considered. As the vehicle moves forward, its interior will exchange air from the surroundings. The CFD model captures the flow patterns generated both outside and inside the vehicle. This internal aerodynamics will in turn dictate how aerosols will spread across the interior and whether or not they will be transported outside the vehicle. A Lagrangian approach is used to determine the transport of the aerosol particles and the effect of particle size on the simulation result has been studied. Four sets of scenarios of practical interest have been considered. The first set shows the effect of vehicle speed on aerosol transport, and the second set describes what happens when some of the windows are closed, while the third set describes how aerosol transport is affected by the location of the passenger speaking. The fourth set describes how a gush of cross wind affects aerosol transport. Simulation results reveal that when all windows are open, aerosols can go out of one window and then return back to the vehicle interior through another window. Results also reveal that when a passenger sitting in the second row speaks, the aerosols generated span across the entire volume of the car interior before going out through the open windows.