Cargando…
A Novel Sequentially Evolved EML4-ALK Variant 3 G1202R/S1206Y Double Mutation In Cis Confers Resistance to Lorlatinib: A Brief Report and Literature Review
Lorlatinib is a third-generation ALK inhibitor that can overcome the largest number of acquired ALK resistance mutations, including the solvent-front mutation G1202R. Here, we report, for the first time, a novel, sequentially-evolved EML4-ALK variant 3 G1202R/S1206Y double mutation in cis detected i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474455/ https://www.ncbi.nlm.nih.gov/pubmed/34589977 http://dx.doi.org/10.1016/j.jtocrr.2020.100116 |
Sumario: | Lorlatinib is a third-generation ALK inhibitor that can overcome the largest number of acquired ALK resistance mutations, including the solvent-front mutation G1202R. Here, we report, for the first time, a novel, sequentially-evolved EML4-ALK variant 3 G1202R/S1206Y double mutation in cis detected in a patient with ALK-positive NSCLC after disease progression on sequential crizotinib, alectinib, and then lorlatinib. Three-dimensional computer modeling of this double mutation and other G1202R-based double mutations with lorlatinib (ALK G1202R/L1196M, ALK G1202R/F1174C, ALK G1202R/l1198F, ALK G1202R/G1269A) were provided to reveal how these double mutations may confer resistance to lorlatinib through diverse steric hindrances in the ALK kinase domain. In addition, we performed a comprehensive literature review on published acquired double or triple ALK mutations that are resistant to lorlatinib from both patient samples and in vitro mutagenesis experiments. |
---|