Cargando…
Early life stress and LPS interact to modify the mouse cortical transcriptome in the neonatal period
INTRODUCTION: Preterm birth (PTB) is closely associated with atypical cerebral cortical development and cognitive impairment. Early exposure to extrauterine life often results in atypical environmental and biological experiences that co-occur, including early life stress (ELS) and systemic inflammat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474587/ https://www.ncbi.nlm.nih.gov/pubmed/34589738 http://dx.doi.org/10.1016/j.bbih.2021.100219 |
Sumario: | INTRODUCTION: Preterm birth (PTB) is closely associated with atypical cerebral cortical development and cognitive impairment. Early exposure to extrauterine life often results in atypical environmental and biological experiences that co-occur, including early life stress (ELS) and systemic inflammation. Understanding how these experiences interact to shape cortical development is an essential prerequisite to developing therapeutic interventions that will work in the complex postnatal environment of the preterm infant. Here, we studied the effects of a murine model of infection and ELS on the neonatal cortex transcriptome. METHODS: We used a mouse model of infection (1 mg/kg LPS at postnatal day (P)3) +/− ELS (modified maternal separation; MMS on days P4–P6) at timepoints with neurodevelopmental relevance to PTB. We used 4 groups: control, LPS, MMS and LPS + MMS. Cortices were dissected at P6 for 3′RNA sequencing. RESULTS: LPS exposure resulted in reduced weight gain and increased expression of inflammation-associated genes in the brain. More genes were differentially expressed following LPS (15) and MMS (29) than with LPS + MMS (8). There was significant overlap between the LPS and MMS datasets, particularly amongst upregulated genes, and when comparing LPS and MMS datasets with LPS + MMS. Gene Ontology terms related to the extracellular matrix and cytokine response were enriched following MMS, but not following LPS or LPS + MMS. 26 Reactome pathways were enriched in the LPS group, none of which were enriched in the LPS + MMS group. Finally, a rank-rank hypergeometric overlap test showed similarities, particularly in upregulated genes, in the LPS and MMS conditions, indicating shared mechanisms. CONCLUSION: LPS and MMS interact to modify the cortical transcriptome in the neonatal period. This has important implications for understanding the neural basis of atypical cortical development associated with early exposure to extrauterine life. |
---|