Cargando…
Predicting metabolic pathway membership with deep neural networks by integrating sequential and ontology information
BACKGROUND: Inference of protein’s membership in metabolic pathways has become an important task in functional annotation of protein. The membership information can provide valuable context to the basic functional annotation and also aid reconstruction of incomplete pathways. Previous works have sho...
Autores principales: | Cartealy, Imam, Liao, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474704/ https://www.ncbi.nlm.nih.gov/pubmed/34579673 http://dx.doi.org/10.1186/s12864-021-07629-8 |
Ejemplares similares
-
Deep Neural Network Quantization Framework for Effective Defense against Membership Inference Attacks
por: Famili, Azadeh, et al.
Publicado: (2023) -
Microbial Gene Ontology informed deep neural network for microbe functionality discovery in human diseases
por: Liu, Yunjie, et al.
Publicado: (2023) -
Predicting instances of pathway ontology classes for pathway integration
por: Wang, Lucy Lu, et al.
Publicado: (2019) -
Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction
por: Zhu, Yi-Heng, et al.
Publicado: (2022) -
Predicting pathway membership via domain signatures
por: Fröhlich, Holger, et al.
Publicado: (2008)