Cargando…
Empty nose syndrome pathogenesis and cell-based biotechnology products as a new option for treatment
Empty nose syndrome (ENS) is a rare complication that develops after partial or complete turbinectomy. The main feature of ENS is paradoxical nasal obstruction feeling despite objectively wide nasal airway. ENS pathogenesis is multifactorial and includes changes in laminar physiological airflow, dis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474723/ https://www.ncbi.nlm.nih.gov/pubmed/34630863 http://dx.doi.org/10.4252/wjsc.v13.i9.1293 |
Sumario: | Empty nose syndrome (ENS) is a rare complication that develops after partial or complete turbinectomy. The main feature of ENS is paradoxical nasal obstruction feeling despite objectively wide nasal airway. ENS pathogenesis is multifactorial and includes changes in laminar physiological airflow, disruption of mucosa functions and deficient neural sensation. This leads to the development of ENS symptomatology such as dyspnea, nasal dryness, nasal burning, nasal obstruction, feeling of suffocation and even comorbid psychiatric disorders that significantly impairs life quality. Specific effective treatment of ENS does not exist up to date. In this review we outline existing biomaterial for surgical reconstitution of nasal anatomy and discuss the perspective of stem cell-based technologies in ENS management. The main focus is directed to justification of rationality application of adult mesenchymal stem cells (MSCs) from different tissues origin and neural crest-derived stem cells (NCSCs) based on their intrinsic biological properties. MSCs transplantation may stimulate mucosa tissue regeneration via trophic factors secretion, direct transdifferentiation into epithelial cells and pronounced immunosuppressive effect. From the other hand, NCSCs based on their high neuroprotective properties may reconstitute nerve structure and functioning leading to normal sensation in ENS patients. We postulate that application of cell-based and tissue-engineered products can help to significantly improve ENS symptomatology only as complex approach aimed at reconstitution of nasal anatomy, recovery the nasal mucosa functionality and neural tissue sensation. |
---|