Cargando…

Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring

BACKGROUND: Road traffic air pollution is linked with an increased risk of autistic spectrum disorder (ASD). The aim of this study is to assess the effect of exposure to prenatal or postnatal traffic-related air pollution combining concomitant noise pollution on ASD-related epigenetic and behavioral...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qinfeng, Tian, Yu, Xu, Chenlu, Wang, Juling, Jin, Yongtang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474908/
https://www.ncbi.nlm.nih.gov/pubmed/34565458
http://dx.doi.org/10.1186/s13148-021-01170-x
_version_ 1784575326562549760
author Zhou, Qinfeng
Tian, Yu
Xu, Chenlu
Wang, Juling
Jin, Yongtang
author_facet Zhou, Qinfeng
Tian, Yu
Xu, Chenlu
Wang, Juling
Jin, Yongtang
author_sort Zhou, Qinfeng
collection PubMed
description BACKGROUND: Road traffic air pollution is linked with an increased risk of autistic spectrum disorder (ASD). The aim of this study is to assess the effect of exposure to prenatal or postnatal traffic-related air pollution combining concomitant noise pollution on ASD-related epigenetic and behavioral alternations on offspring. METHODS: A 2 × 2 factorial analysis experiment was designed. Wistar rats were exposed at different sites (L group: green space; H group: crossroads) and timings (E group: full gestation; P group: 21 days after birth) at the same time, and air pollutants of nitrogen dioxide (NO(2)) and fine particles (PM(2.5)) were meanwhile sampled. On postnatal day 25, brains from offspring of each group were extracted to determine the levels of DNA methylation in Shank3 (three parts: Shank3_01, Shank3_02, Shank3_03) and MeCP2 (two parts: MeCP2_01, MeCP2_02) promoter regions, H3K4me3 and H3K27me3 after three-chamber social test. Meanwhile, the Shank3 and MeCP2 levels were quantified. RESULTS: The concentrations of PM(2.5) (L: 58.33 µg/m(3); H: 88.33 µg/m(3), P < 0.05) and NO(2) (L: 52.76 µg/m(3); H: 146.03 µg/m(3), P < 0.01) as well as the intensity of noise pollution (L: 44.4 dB (A); H: 70.1 dB (A), P < 0.001) differed significantly from 18:00 to 19:00 between experimental sites. Traffic pollution exposure (P = 0.006) and neonatal exposure (P = 0.001) led to lower weight of male pups on PND25. Male rats under early-life exposure had increased levels of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.001, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.94 µg/mg; EH: 11.98; PL: 17.14; PH: 14.78, timing P < 0.05), and reduced levels of H3K27me3 (EL: 71.07 µg/mg; EH: 44.76; PL: 29.15; PH: 28.67, timing P < 0.001; site P < 0.05) in brain compared to those under prenatal exposure. There was, for female pups, a same pattern of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.05, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.27 µg/mg; EH: 11.55; PL: 16.11; PH: 15.44, timing P < 0.001), but the levels of H3K27me3 exhibited an inverse trend concerning exposure timing. Hypermethylation at the MeCP2 and Shank3 promoter was correlated with the less content of MeCP2 (female: EL: 32.23 ng/mg; EH: 29.58; PL: 25.01; PH: 23.03, timing P < 0.001; site P < 0.05; male: EL: 31.05 ng/mg; EH: 32.75; PL: 23.40; PH: 25.91, timing P < 0.001) and Shank3 (female: EL: 5.10 ng/mg; EH: 5.31; PL: 4.63; PH: 4.82, timing P < 0.001; male: EL: 5.40 ng/mg; EH: 5.48; PL: 4.82; PH: 4.87, timing P < 0.001). Rats with traffic pollution exposure showed aberrant sociability preference and social novelty, while those without it behaved normally. CONCLUSIONS: Our findings suggest early life under environmental risks is a crucial window for epigenetic perturbations and then abnormalities in protein expression, and traffic pollution impairs behaviors either during pregnancy or after birth. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13148-021-01170-x.
format Online
Article
Text
id pubmed-8474908
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-84749082021-09-28 Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring Zhou, Qinfeng Tian, Yu Xu, Chenlu Wang, Juling Jin, Yongtang Clin Epigenetics Research BACKGROUND: Road traffic air pollution is linked with an increased risk of autistic spectrum disorder (ASD). The aim of this study is to assess the effect of exposure to prenatal or postnatal traffic-related air pollution combining concomitant noise pollution on ASD-related epigenetic and behavioral alternations on offspring. METHODS: A 2 × 2 factorial analysis experiment was designed. Wistar rats were exposed at different sites (L group: green space; H group: crossroads) and timings (E group: full gestation; P group: 21 days after birth) at the same time, and air pollutants of nitrogen dioxide (NO(2)) and fine particles (PM(2.5)) were meanwhile sampled. On postnatal day 25, brains from offspring of each group were extracted to determine the levels of DNA methylation in Shank3 (three parts: Shank3_01, Shank3_02, Shank3_03) and MeCP2 (two parts: MeCP2_01, MeCP2_02) promoter regions, H3K4me3 and H3K27me3 after three-chamber social test. Meanwhile, the Shank3 and MeCP2 levels were quantified. RESULTS: The concentrations of PM(2.5) (L: 58.33 µg/m(3); H: 88.33 µg/m(3), P < 0.05) and NO(2) (L: 52.76 µg/m(3); H: 146.03 µg/m(3), P < 0.01) as well as the intensity of noise pollution (L: 44.4 dB (A); H: 70.1 dB (A), P < 0.001) differed significantly from 18:00 to 19:00 between experimental sites. Traffic pollution exposure (P = 0.006) and neonatal exposure (P = 0.001) led to lower weight of male pups on PND25. Male rats under early-life exposure had increased levels of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.001, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.94 µg/mg; EH: 11.98; PL: 17.14; PH: 14.78, timing P < 0.05), and reduced levels of H3K27me3 (EL: 71.07 µg/mg; EH: 44.76; PL: 29.15; PH: 28.67, timing P < 0.001; site P < 0.05) in brain compared to those under prenatal exposure. There was, for female pups, a same pattern of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.05, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.27 µg/mg; EH: 11.55; PL: 16.11; PH: 15.44, timing P < 0.001), but the levels of H3K27me3 exhibited an inverse trend concerning exposure timing. Hypermethylation at the MeCP2 and Shank3 promoter was correlated with the less content of MeCP2 (female: EL: 32.23 ng/mg; EH: 29.58; PL: 25.01; PH: 23.03, timing P < 0.001; site P < 0.05; male: EL: 31.05 ng/mg; EH: 32.75; PL: 23.40; PH: 25.91, timing P < 0.001) and Shank3 (female: EL: 5.10 ng/mg; EH: 5.31; PL: 4.63; PH: 4.82, timing P < 0.001; male: EL: 5.40 ng/mg; EH: 5.48; PL: 4.82; PH: 4.87, timing P < 0.001). Rats with traffic pollution exposure showed aberrant sociability preference and social novelty, while those without it behaved normally. CONCLUSIONS: Our findings suggest early life under environmental risks is a crucial window for epigenetic perturbations and then abnormalities in protein expression, and traffic pollution impairs behaviors either during pregnancy or after birth. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13148-021-01170-x. BioMed Central 2021-09-26 /pmc/articles/PMC8474908/ /pubmed/34565458 http://dx.doi.org/10.1186/s13148-021-01170-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Zhou, Qinfeng
Tian, Yu
Xu, Chenlu
Wang, Juling
Jin, Yongtang
Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring
title Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring
title_full Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring
title_fullStr Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring
title_full_unstemmed Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring
title_short Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats’ offspring
title_sort prenatal and postnatal traffic pollution exposure, dna methylation in shank3 and mecp2 promoter regions, h3k4me3 and h3k27me3 and sociability in rats’ offspring
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474908/
https://www.ncbi.nlm.nih.gov/pubmed/34565458
http://dx.doi.org/10.1186/s13148-021-01170-x
work_keys_str_mv AT zhouqinfeng prenatalandpostnataltrafficpollutionexposurednamethylationinshank3andmecp2promoterregionsh3k4me3andh3k27me3andsociabilityinratsoffspring
AT tianyu prenatalandpostnataltrafficpollutionexposurednamethylationinshank3andmecp2promoterregionsh3k4me3andh3k27me3andsociabilityinratsoffspring
AT xuchenlu prenatalandpostnataltrafficpollutionexposurednamethylationinshank3andmecp2promoterregionsh3k4me3andh3k27me3andsociabilityinratsoffspring
AT wangjuling prenatalandpostnataltrafficpollutionexposurednamethylationinshank3andmecp2promoterregionsh3k4me3andh3k27me3andsociabilityinratsoffspring
AT jinyongtang prenatalandpostnataltrafficpollutionexposurednamethylationinshank3andmecp2promoterregionsh3k4me3andh3k27me3andsociabilityinratsoffspring