Cargando…
Biologically relevant transfer learning improves transcription factor binding prediction
BACKGROUND: Deep learning has proven to be a powerful technique for transcription factor (TF) binding prediction but requires large training datasets. Transfer learning can reduce the amount of data required for deep learning, while improving overall model performance, compared to training a separat...
Autores principales: | Novakovsky, Gherman, Saraswat, Manu, Fornes, Oriol, Mostafavi, Sara, Wasserman, Wyeth W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8474956/ https://www.ncbi.nlm.nih.gov/pubmed/34579793 http://dx.doi.org/10.1186/s13059-021-02499-5 |
Ejemplares similares
-
ExplaiNN: interpretable and transparent neural networks for genomics
por: Novakovsky, Gherman, et al.
Publicado: (2023) -
Evaluating the impact of single nucleotide variants on transcription factor binding
por: Shi, Wenqiang, et al.
Publicado: (2016) -
Gene expression models based on transcription factor binding events confer insight into functional cis-regulatory variants
por: Shi, Wenqiang, et al.
Publicado: (2019) -
In silico discovery of small molecules for efficient stem cell differentiation into definitive endoderm
por: Novakovsky, Gherman, et al.
Publicado: (2023) -
MANTA2, update of the Mongo database for the analysis of transcription factor binding site alterations
por: Fornes, Oriol, et al.
Publicado: (2018)