Cargando…
A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities
Deep neural networks (DNNs) have revolutionized computer science and are now widely used for neuroscientific research. A hot debate has ensued about the usefulness of DNNs as neuroscientific models of the human visual system; the debate centers on to what extent certain shortcomings of DNNs are real...
Autores principales: | Lonnqvist, Ben, Bornet, Alban, Doerig, Adrien, Herzog, Michael H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8475290/ https://www.ncbi.nlm.nih.gov/pubmed/34551062 http://dx.doi.org/10.1167/jov.21.10.17 |
Ejemplares similares
-
Dissecting (un)crowding
por: Choung, Oh-Hyeon, et al.
Publicado: (2021) -
Shrinking Bouma’s window: How to model crowding in dense displays
por: Bornet, Alban, et al.
Publicado: (2021) -
Beyond Bouma's window: How to explain global aspects of crowding?
por: Doerig, Adrien, et al.
Publicado: (2019) -
Global and high-level effects in crowding cannot be predicted by either high-dimensional pooling or target cueing
por: Bornet, Alban, et al.
Publicado: (2021) -
Running Large-Scale Simulations on the Neurorobotics Platform to Understand Vision – The Case of Visual Crowding
por: Bornet, Alban, et al.
Publicado: (2019)