Cargando…
Probing T-cell response by sequence-based probabilistic modeling
With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learni...
Autores principales: | Bravi, Barbara, Balachandran, Vinod P., Greenbaum, Benjamin D., Walczak, Aleksandra M., Mora, Thierry, Monasson, Rémi, Cocco, Simona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476001/ https://www.ncbi.nlm.nih.gov/pubmed/34473697 http://dx.doi.org/10.1371/journal.pcbi.1009297 |
Ejemplares similares
-
RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles
por: Bravi, Barbara, et al.
Publicado: (2021) -
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
por: Bravi, Barbara, et al.
Publicado: (2023) -
Improving sequence-based modeling of protein families using secondary-structure quality assessment
por: Malbranke, Cyril, et al.
Publicado: (2021) -
Learning protein constitutive motifs from sequence data
por: Tubiana, Jérôme, et al.
Publicado: (2019) -
Adaptive cluster algorithm to infer Boltzmann machines from multi-electrode recording data
por: Cocco, Simona, et al.
Publicado: (2011)