Cargando…
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data
Variable selection and penalized regression models in high-dimension settings have become an increasingly important topic in many disciplines. For instance, omics data are generated in biomedical researches that may be associated with survival of patients and suggest insights into disease dynamics t...
Autores principales: | Tapak, Leili, Kosorok, Michael R., Sadeghifar, Majid, Hamidi, Omid, Afshar, Saeid, Doosti, Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476266/ https://www.ncbi.nlm.nih.gov/pubmed/34589136 http://dx.doi.org/10.1155/2021/5169052 |
Ejemplares similares
-
Multistate recursively imputed survival trees for time-to-event data analysis: an application to AIDS and mortality post-HIV infection data
por: Tapak, Leili, et al.
Publicado: (2018) -
The importance of censoring in competing risks analysis of the subdistribution hazard
por: Donoghoe, Mark W., et al.
Publicado: (2017) -
Identification of Prognostic Biomarkers for Breast Cancer Metastasis
Using Penalized Additive Hazards Regression Model
por: Tapak, Leili, et al.
Publicado: (2023) -
High-Dimensional Additive Hazards Regression for Oral Squamous Cell Carcinoma Using Microarray Data: A Comparative Study
por: Hamidi, Omid, et al.
Publicado: (2014) -
Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data
por: TAPAK, Leili, et al.
Publicado: (2016)