Cargando…
Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients
BACKGROUND: Out-of-hospital cardiac arrest (OHCA) is a major health problem worldwide, and neurologic injury remains the leading cause of morbidity and mortality among survivors of OHCA. The purpose of this study was to investigate whether a machine learning algorithm could detect complex dependenci...
Autores principales: | Cheng, Chi-Yung, Chiu, I-Min, Zeng, Wun-Huei, Tsai, Chih-Min, Lin, Chun-Hung Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476270/ https://www.ncbi.nlm.nih.gov/pubmed/34589553 http://dx.doi.org/10.1155/2021/9590131 |
Ejemplares similares
-
Predicting survival and neurological outcome in out-of-hospital cardiac arrest using machine learning: the SCARS model
por: Hessulf, Fredrik, et al.
Publicado: (2023) -
Clinical Validation of Cardiac Arrest Hospital Prognosis (CAHP) Score and MIRACLE2 Score to Predict Neurologic Outcomes after Out-of-Hospital Cardiac Arrest
por: Wu, Jun-Zuo, et al.
Publicado: (2022) -
Using Machine Learning to Predict Invasive Bacterial Infections in Young Febrile Infants Visiting the Emergency Department
por: Chiu, I-Min, et al.
Publicado: (2021) -
Using a Multiclass Machine Learning Model to Predict the Outcome of Acute Ischemic Stroke Requiring Reperfusion Therapy
por: Chiu, I-Min, et al.
Publicado: (2021) -
Impact of Transport Time and Cardiac Arrest Centers on the Neurological Outcome After Out‐of‐Hospital Cardiac Arrest: A Retrospective Cohort Study
por: Chien, Cheng‐Yu, et al.
Publicado: (2020)