Cargando…
An enhanced variant effect predictor based on a deep generative model and the Born-Again Networks
The development of an accurate and reliable variant effect prediction tool is important for research in human genetic diseases. A large number of predictors have been developed towards this goal, yet many of these predictors suffer from the problem of data circularity. Here we present MTBAN (Mutatio...
Autores principales: | Kim, Ha Young, Jeon, Woosung, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476491/ https://www.ncbi.nlm.nih.gov/pubmed/34580383 http://dx.doi.org/10.1038/s41598-021-98693-3 |
Ejemplares similares
-
Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors
por: Jeon, Woosung, et al.
Publicado: (2020) -
G-RANK: an equivariant graph neural network for the scoring of protein–protein docking models
por: Kim, Ha Young, et al.
Publicado: (2023) -
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network
por: Chung, Taesu, et al.
Publicado: (2019) -
Lockdown again and again?
por: Wilson, Clare
Publicado: (2020)