Cargando…
Artificial intelligence-based image analysis can predict outcome in high-grade serous carcinoma via histology alone
High-grade extrauterine serous carcinoma (HGSC) is an aggressive tumor with high rates of recurrence, frequent chemotherapy resistance, and overall 5-year survival of less than 50%. Beyond determining and confirming the diagnosis itself, pathologist review of histologic slides provides no prognostic...
Autores principales: | Laury, Anna Ray, Blom, Sami, Ropponen, Tuomas, Virtanen, Anni, Carpén, Olli Mikael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476598/ https://www.ncbi.nlm.nih.gov/pubmed/34580357 http://dx.doi.org/10.1038/s41598-021-98480-0 |
Ejemplares similares
-
QuantISH: RNA in situ hybridization image analysis framework for quantifying cell type-specific target RNA expression and variability
por: Jamalzadeh, Sanaz, et al.
Publicado: (2022) -
Functional Homologous Recombination Assay on FFPE Specimens of Advanced High-Grade Serous Ovarian Cancer Predicts Clinical Outcomes
por: Pikkusaari, Sanna, et al.
Publicado: (2023) -
A platform for efficient establishment and drug-response profiling of high-grade serous ovarian cancer organoids
por: Senkowski, Wojciech, et al.
Publicado: (2023) -
An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer
por: Pan, Jiexin, et al.
Publicado: (2023) -
A survival analysis comparing women with ovarian low-grade serous carcinoma to those with high-grade histology
por: Chen, Ming, et al.
Publicado: (2014)