Cargando…
In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets
High-throughput sequencing describes multiple alterations in individual tumors, but their functional relevance is often unclear. Clinic-close, individualized molecular model systems are required for functional validation and to identify therapeutic targets of high significance for each patient. Here...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476619/ https://www.ncbi.nlm.nih.gov/pubmed/34580292 http://dx.doi.org/10.1038/s41467-021-25963-z |
_version_ | 1784575659355406336 |
---|---|
author | Carlet, Michela Völse, Kerstin Vergalli, Jenny Becker, Martin Herold, Tobias Arner, Anja Senft, Daniela Jurinovic, Vindi Liu, Wen-Hsin Gao, Yuqiao Dill, Veronika Fehse, Boris Baldus, Claudia D. Bastian, Lorenz Lenk, Lennart Schewe, Denis M. Bagnoli, Johannes W. Vick, Binje Schmid, Jan Philipp Wilhelm, Alexander Marschalek, Rolf Jost, Philipp J. Miething, Cornelius Riecken, Kristoffer Schmidt-Supprian, Marc Binder, Vera Jeremias, Irmela |
author_facet | Carlet, Michela Völse, Kerstin Vergalli, Jenny Becker, Martin Herold, Tobias Arner, Anja Senft, Daniela Jurinovic, Vindi Liu, Wen-Hsin Gao, Yuqiao Dill, Veronika Fehse, Boris Baldus, Claudia D. Bastian, Lorenz Lenk, Lennart Schewe, Denis M. Bagnoli, Johannes W. Vick, Binje Schmid, Jan Philipp Wilhelm, Alexander Marschalek, Rolf Jost, Philipp J. Miething, Cornelius Riecken, Kristoffer Schmidt-Supprian, Marc Binder, Vera Jeremias, Irmela |
author_sort | Carlet, Michela |
collection | PubMed |
description | High-throughput sequencing describes multiple alterations in individual tumors, but their functional relevance is often unclear. Clinic-close, individualized molecular model systems are required for functional validation and to identify therapeutic targets of high significance for each patient. Here, we establish a Cre-ER(T2)-loxP (causes recombination, estrogen receptor mutant T2, locus of X-over P1) based inducible RNAi- (ribonucleic acid interference) mediated gene silencing system in patient-derived xenograft (PDX) models of acute leukemias in vivo. Mimicking anti-cancer therapy in patients, gene inhibition is initiated in mice harboring orthotopic tumors. In fluorochrome guided, competitive in vivo trials, silencing of the apoptosis regulator MCL1 (myeloid cell leukemia sequence 1) correlates to pharmacological MCL1 inhibition in patients´ tumors, demonstrating the ability of the method to detect therapeutic vulnerabilities. The technique identifies a major tumor-maintaining potency of the MLL-AF4 (mixed lineage leukemia, ALL1-fused gene from chromosome 4) fusion, restricted to samples carrying the translocation. DUX4 (double homeobox 4) plays an essential role in patients’ leukemias carrying the recently described DUX4-IGH (immunoglobulin heavy chain) translocation, while the downstream mediator DDIT4L (DNA-damage-inducible transcript 4 like) is identified as therapeutic vulnerability. By individualizing functional genomics in established tumors in vivo, our technique decisively complements the value chain of precision oncology. Being broadly applicable to tumors of all kinds, it will considerably reinforce personalizing anti-cancer treatment in the future. |
format | Online Article Text |
id | pubmed-8476619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84766192021-10-22 In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets Carlet, Michela Völse, Kerstin Vergalli, Jenny Becker, Martin Herold, Tobias Arner, Anja Senft, Daniela Jurinovic, Vindi Liu, Wen-Hsin Gao, Yuqiao Dill, Veronika Fehse, Boris Baldus, Claudia D. Bastian, Lorenz Lenk, Lennart Schewe, Denis M. Bagnoli, Johannes W. Vick, Binje Schmid, Jan Philipp Wilhelm, Alexander Marschalek, Rolf Jost, Philipp J. Miething, Cornelius Riecken, Kristoffer Schmidt-Supprian, Marc Binder, Vera Jeremias, Irmela Nat Commun Article High-throughput sequencing describes multiple alterations in individual tumors, but their functional relevance is often unclear. Clinic-close, individualized molecular model systems are required for functional validation and to identify therapeutic targets of high significance for each patient. Here, we establish a Cre-ER(T2)-loxP (causes recombination, estrogen receptor mutant T2, locus of X-over P1) based inducible RNAi- (ribonucleic acid interference) mediated gene silencing system in patient-derived xenograft (PDX) models of acute leukemias in vivo. Mimicking anti-cancer therapy in patients, gene inhibition is initiated in mice harboring orthotopic tumors. In fluorochrome guided, competitive in vivo trials, silencing of the apoptosis regulator MCL1 (myeloid cell leukemia sequence 1) correlates to pharmacological MCL1 inhibition in patients´ tumors, demonstrating the ability of the method to detect therapeutic vulnerabilities. The technique identifies a major tumor-maintaining potency of the MLL-AF4 (mixed lineage leukemia, ALL1-fused gene from chromosome 4) fusion, restricted to samples carrying the translocation. DUX4 (double homeobox 4) plays an essential role in patients’ leukemias carrying the recently described DUX4-IGH (immunoglobulin heavy chain) translocation, while the downstream mediator DDIT4L (DNA-damage-inducible transcript 4 like) is identified as therapeutic vulnerability. By individualizing functional genomics in established tumors in vivo, our technique decisively complements the value chain of precision oncology. Being broadly applicable to tumors of all kinds, it will considerably reinforce personalizing anti-cancer treatment in the future. Nature Publishing Group UK 2021-09-27 /pmc/articles/PMC8476619/ /pubmed/34580292 http://dx.doi.org/10.1038/s41467-021-25963-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Carlet, Michela Völse, Kerstin Vergalli, Jenny Becker, Martin Herold, Tobias Arner, Anja Senft, Daniela Jurinovic, Vindi Liu, Wen-Hsin Gao, Yuqiao Dill, Veronika Fehse, Boris Baldus, Claudia D. Bastian, Lorenz Lenk, Lennart Schewe, Denis M. Bagnoli, Johannes W. Vick, Binje Schmid, Jan Philipp Wilhelm, Alexander Marschalek, Rolf Jost, Philipp J. Miething, Cornelius Riecken, Kristoffer Schmidt-Supprian, Marc Binder, Vera Jeremias, Irmela In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
title | In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
title_full | In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
title_fullStr | In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
title_full_unstemmed | In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
title_short | In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
title_sort | in vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476619/ https://www.ncbi.nlm.nih.gov/pubmed/34580292 http://dx.doi.org/10.1038/s41467-021-25963-z |
work_keys_str_mv | AT carletmichela invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT volsekerstin invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT vergallijenny invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT beckermartin invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT heroldtobias invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT arneranja invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT senftdaniela invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT jurinovicvindi invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT liuwenhsin invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT gaoyuqiao invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT dillveronika invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT fehseboris invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT baldusclaudiad invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT bastianlorenz invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT lenklennart invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT schewedenism invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT bagnolijohannesw invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT vickbinje invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT schmidjanphilipp invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT wilhelmalexander invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT marschalekrolf invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT jostphilippj invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT miethingcornelius invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT rieckenkristoffer invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT schmidtsupprianmarc invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT bindervera invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets AT jeremiasirmela invivoinduciblereversegeneticsinpatientstumorstoidentifyindividualtherapeutictargets |