Cargando…
Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water
Dendrimers as commonly used metal ions adsorption materials have the advantages of good adsorption performance and high reuse rate, but the high cost limits its extensive use. Compared with dendrimers, hyperbranched dendrimers have similar physical and chemical properties and are more economical. Th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476761/ https://www.ncbi.nlm.nih.gov/pubmed/34595155 http://dx.doi.org/10.3389/fchem.2021.743429 |
_version_ | 1784575687406911488 |
---|---|
author | Geng, Xue Qu, Rongjun Kong, Xiangyu Geng, Shengnan Zhang, Ying Sun, Changmei Ji, Chunnuan |
author_facet | Geng, Xue Qu, Rongjun Kong, Xiangyu Geng, Shengnan Zhang, Ying Sun, Changmei Ji, Chunnuan |
author_sort | Geng, Xue |
collection | PubMed |
description | Dendrimers as commonly used metal ions adsorption materials have the advantages of good adsorption performance and high reuse rate, but the high cost limits its extensive use. Compared with dendrimers, hyperbranched dendrimers have similar physical and chemical properties and are more economical. Therefore, hyperbranched dendrimers are more suitable for industrial large-scale adsorption. The hyperbranched polyamidoamine (HPAMAM) gels were prepared by cross-linking hyperbranched polyamidoamine (HPAMAM-ECH-x and HPAMAM-EGDE-x) with different amounts of epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE), respectively. The as-synthesized adsorbents were characterized by FT-IR, SEM and XPS. The prepared adsorbents were used to adsorb Hg(Ⅱ) in aqueous solution, and the effects of solution pH, contact time, temperature and initial concentration of metal ion on the adsorption capacity were investigated. The effect of solution pH indicated that the optimum condition to Hg(Ⅱ) removing was at pH 5.0. The adsorption kinetic curves of the two kinds of materials were in accordance with the pseudo-second-order model. For the HPAMAM-ECH samples, the adsorption thermodynamic curves fitted the Langmuir model, while for the HPAMAM-EGDE samples, both Langmuir and Freundlich equations fitted well. The maximum adsorption capacity of HPAMAM-ECH-3 obtained from Langmuir model toward Hg(Ⅱ) was 3.36 mmol/g at pH 5.0 and 35°C. |
format | Online Article Text |
id | pubmed-8476761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84767612021-09-29 Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water Geng, Xue Qu, Rongjun Kong, Xiangyu Geng, Shengnan Zhang, Ying Sun, Changmei Ji, Chunnuan Front Chem Chemistry Dendrimers as commonly used metal ions adsorption materials have the advantages of good adsorption performance and high reuse rate, but the high cost limits its extensive use. Compared with dendrimers, hyperbranched dendrimers have similar physical and chemical properties and are more economical. Therefore, hyperbranched dendrimers are more suitable for industrial large-scale adsorption. The hyperbranched polyamidoamine (HPAMAM) gels were prepared by cross-linking hyperbranched polyamidoamine (HPAMAM-ECH-x and HPAMAM-EGDE-x) with different amounts of epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE), respectively. The as-synthesized adsorbents were characterized by FT-IR, SEM and XPS. The prepared adsorbents were used to adsorb Hg(Ⅱ) in aqueous solution, and the effects of solution pH, contact time, temperature and initial concentration of metal ion on the adsorption capacity were investigated. The effect of solution pH indicated that the optimum condition to Hg(Ⅱ) removing was at pH 5.0. The adsorption kinetic curves of the two kinds of materials were in accordance with the pseudo-second-order model. For the HPAMAM-ECH samples, the adsorption thermodynamic curves fitted the Langmuir model, while for the HPAMAM-EGDE samples, both Langmuir and Freundlich equations fitted well. The maximum adsorption capacity of HPAMAM-ECH-3 obtained from Langmuir model toward Hg(Ⅱ) was 3.36 mmol/g at pH 5.0 and 35°C. Frontiers Media S.A. 2021-09-14 /pmc/articles/PMC8476761/ /pubmed/34595155 http://dx.doi.org/10.3389/fchem.2021.743429 Text en Copyright © 2021 Geng, Qu, Kong, Geng, Zhang, Sun and Ji. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Geng, Xue Qu, Rongjun Kong, Xiangyu Geng, Shengnan Zhang, Ying Sun, Changmei Ji, Chunnuan Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water |
title | Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water |
title_full | Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water |
title_fullStr | Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water |
title_full_unstemmed | Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water |
title_short | Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water |
title_sort | facile synthesis of cross-linked hyperbranched polyamidoamines dendrimers for efficient hg(ⅱ) removal from water |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476761/ https://www.ncbi.nlm.nih.gov/pubmed/34595155 http://dx.doi.org/10.3389/fchem.2021.743429 |
work_keys_str_mv | AT gengxue facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater AT qurongjun facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater AT kongxiangyu facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater AT gengshengnan facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater AT zhangying facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater AT sunchangmei facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater AT jichunnuan facilesynthesisofcrosslinkedhyperbranchedpolyamidoaminesdendrimersforefficienthgiiremovalfromwater |