Cargando…
Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate
This paper aims to evaluate the performance of multiple non-linear regression techniques, such as support-vector regression (SVR), k-nearest neighbor (KNN), Random Forest Regressor, Gradient Boosting, and XGBOOST for COVID-19 reproduction rate prediction and to study the impact of feature selection...
Autores principales: | Kaliappan, Jayakumar, Srinivasan, Kathiravan, Mian Qaisar, Saeed, Sundararajan, Karpagam, Chang, Chuan-Yu, C, Suganthan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476853/ https://www.ncbi.nlm.nih.gov/pubmed/34595149 http://dx.doi.org/10.3389/fpubh.2021.729795 |
Ejemplares similares
-
Ontology-Enabled Emotional Sentiment Analysis on COVID-19 Pandemic-Related Twitter Streams
por: Narayanasamy, Senthil Kumar, et al.
Publicado: (2021) -
Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection
por: Kaliappan, Jayakumar, et al.
Publicado: (2015) -
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
por: K, Ashwini, et al.
Publicado: (2021) -
Evaluating Deep Neural Network Architectures with Transfer Learning for Pneumonitis Diagnosis
por: Krishnamurthy, Surya, et al.
Publicado: (2021) -
MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net
por: Vijay, Sanchit, et al.
Publicado: (2023)