Cargando…
Using Artificial Intelligence for Automatic Segmentation of CT Lung Images in Acute Respiratory Distress Syndrome
Knowledge of gas volume, tissue mass and recruitability measured by the quantitative CT scan analysis (CT-qa) is important when setting the mechanical ventilation in acute respiratory distress syndrome (ARDS). Yet, the manual segmentation of the lung requires a considerable workload. Our goal was to...
Autores principales: | Herrmann, Peter, Busana, Mattia, Cressoni, Massimo, Lotz, Joachim, Moerer, Onnen, Saager, Leif, Meissner, Konrad, Quintel, Michael, Gattinoni, Luciano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476971/ https://www.ncbi.nlm.nih.gov/pubmed/34594233 http://dx.doi.org/10.3389/fphys.2021.676118 |
Ejemplares similares
-
Role of Fluid and Sodium Retention in Experimental Ventilator-Induced Lung Injury
por: Gattarello, Simone, et al.
Publicado: (2021) -
Ventilatory ratio, dead space, and venous admixture in patients with acute respiratory distress syndrome
por: Maj, Roberta, et al.
Publicado: (2023) -
Gas volume corrections in intensive care unit: needed or pointless?
por: D'Albo, Rosanna, et al.
Publicado: (2023) -
Specific Respiratory System Compliance in COVID-19 and Non–COVID-19 Acute Respiratory Distress Syndrome
por: Pozzi, Tommaso, et al.
Publicado: (2023) -
End-tidal to arterial PCO(2) ratio: a bedside meter of the overall gas exchanger performance
por: Bonifazi, Matteo, et al.
Publicado: (2021)