Cargando…
Machine learning-based prediction of phases in high-entropy alloys: A data article
A systematic framework for choosing the most determinant combination of predictor features and solving the multiclass phase classification problem associated with high-entropy alloy (HEA) was recently proposed [1]. The data associated with that research paper, titled “Machine learning-based predicti...
Autores principales: | Machaka, Ronald, Motsi, Glenda T., Raganya, Lerato M., Radingoana, Precious M., Chikosha, Silethelwe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477136/ https://www.ncbi.nlm.nih.gov/pubmed/34611534 http://dx.doi.org/10.1016/j.dib.2021.107346 |
Ejemplares similares
-
Datasets of narrow thermal hysteresis behaviour Ti-Ni-based HT-SMAs and the predicted accumulated local effects
por: Machaka, Ronald, et al.
Publicado: (2023) -
Fatigue dataset of high-entropy alloys
por: Chen, Shiyi, et al.
Publicado: (2022) -
Dataset for Fracture and Impact Toughness of High-Entropy Alloys
por: Fan, Xuesong, et al.
Publicado: (2023) -
Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
por: Hou, Shuai, et al.
Publicado: (2022) -
Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
por: He, Zhongping, et al.
Publicado: (2022)