Cargando…

Estimating the number of undetected COVID-19 cases among travellers from mainland China

Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rat...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhatia, Sangeeta, Imai, Natsuko, Cuomo-Dannenburg, Gina, Baguelin, Marc, Boonyasiri, Adhiratha, Cori, Anne, Cucunubá, Zulma, Dorigatti, Ilaria, FitzJohn, Rich, Fu, Han, Gaythorpe, Katy, Ghani, Azra, Hamlet, Arran, Hinsley, Wes, Laydon, Daniel, Nedjati-Gilani, Gemma, Okell, Lucy, Riley, Steven, Thompson, Hayley, van Elsland, Sabine, Volz, Erik, Wang, Haowei, Wang, Yuanrong, Whittaker, Charles, Xi, Xiaoyue, Donnelly, Christl A., Ferguson, Neil M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477353/
https://www.ncbi.nlm.nih.gov/pubmed/34632083
http://dx.doi.org/10.12688/wellcomeopenres.15805.3
_version_ 1784575824785047552
author Bhatia, Sangeeta
Imai, Natsuko
Cuomo-Dannenburg, Gina
Baguelin, Marc
Boonyasiri, Adhiratha
Cori, Anne
Cucunubá, Zulma
Dorigatti, Ilaria
FitzJohn, Rich
Fu, Han
Gaythorpe, Katy
Ghani, Azra
Hamlet, Arran
Hinsley, Wes
Laydon, Daniel
Nedjati-Gilani, Gemma
Okell, Lucy
Riley, Steven
Thompson, Hayley
van Elsland, Sabine
Volz, Erik
Wang, Haowei
Wang, Yuanrong
Whittaker, Charles
Xi, Xiaoyue
Donnelly, Christl A.
Ferguson, Neil M.
author_facet Bhatia, Sangeeta
Imai, Natsuko
Cuomo-Dannenburg, Gina
Baguelin, Marc
Boonyasiri, Adhiratha
Cori, Anne
Cucunubá, Zulma
Dorigatti, Ilaria
FitzJohn, Rich
Fu, Han
Gaythorpe, Katy
Ghani, Azra
Hamlet, Arran
Hinsley, Wes
Laydon, Daniel
Nedjati-Gilani, Gemma
Okell, Lucy
Riley, Steven
Thompson, Hayley
van Elsland, Sabine
Volz, Erik
Wang, Haowei
Wang, Yuanrong
Whittaker, Charles
Xi, Xiaoyue
Donnelly, Christl A.
Ferguson, Neil M.
author_sort Bhatia, Sangeeta
collection PubMed
description Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries. Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world.  These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.
format Online
Article
Text
id pubmed-8477353
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-84773532021-10-07 Estimating the number of undetected COVID-19 cases among travellers from mainland China Bhatia, Sangeeta Imai, Natsuko Cuomo-Dannenburg, Gina Baguelin, Marc Boonyasiri, Adhiratha Cori, Anne Cucunubá, Zulma Dorigatti, Ilaria FitzJohn, Rich Fu, Han Gaythorpe, Katy Ghani, Azra Hamlet, Arran Hinsley, Wes Laydon, Daniel Nedjati-Gilani, Gemma Okell, Lucy Riley, Steven Thompson, Hayley van Elsland, Sabine Volz, Erik Wang, Haowei Wang, Yuanrong Whittaker, Charles Xi, Xiaoyue Donnelly, Christl A. Ferguson, Neil M. Wellcome Open Res Research Article Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries. Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world.  These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China. F1000 Research Limited 2021-12-06 /pmc/articles/PMC8477353/ /pubmed/34632083 http://dx.doi.org/10.12688/wellcomeopenres.15805.3 Text en Copyright: © 2021 Bhatia S et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bhatia, Sangeeta
Imai, Natsuko
Cuomo-Dannenburg, Gina
Baguelin, Marc
Boonyasiri, Adhiratha
Cori, Anne
Cucunubá, Zulma
Dorigatti, Ilaria
FitzJohn, Rich
Fu, Han
Gaythorpe, Katy
Ghani, Azra
Hamlet, Arran
Hinsley, Wes
Laydon, Daniel
Nedjati-Gilani, Gemma
Okell, Lucy
Riley, Steven
Thompson, Hayley
van Elsland, Sabine
Volz, Erik
Wang, Haowei
Wang, Yuanrong
Whittaker, Charles
Xi, Xiaoyue
Donnelly, Christl A.
Ferguson, Neil M.
Estimating the number of undetected COVID-19 cases among travellers from mainland China
title Estimating the number of undetected COVID-19 cases among travellers from mainland China
title_full Estimating the number of undetected COVID-19 cases among travellers from mainland China
title_fullStr Estimating the number of undetected COVID-19 cases among travellers from mainland China
title_full_unstemmed Estimating the number of undetected COVID-19 cases among travellers from mainland China
title_short Estimating the number of undetected COVID-19 cases among travellers from mainland China
title_sort estimating the number of undetected covid-19 cases among travellers from mainland china
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477353/
https://www.ncbi.nlm.nih.gov/pubmed/34632083
http://dx.doi.org/10.12688/wellcomeopenres.15805.3
work_keys_str_mv AT bhatiasangeeta estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT imainatsuko estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT cuomodannenburggina estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT baguelinmarc estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT boonyasiriadhiratha estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT corianne estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT cucunubazulma estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT dorigattiilaria estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT fitzjohnrich estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT fuhan estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT gaythorpekaty estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT ghaniazra estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT hamletarran estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT hinsleywes estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT laydondaniel estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT nedjatigilanigemma estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT okelllucy estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT rileysteven estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT thompsonhayley estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT vanelslandsabine estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT volzerik estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT wanghaowei estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT wangyuanrong estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT whittakercharles estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT xixiaoyue estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT donnellychristla estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina
AT fergusonneilm estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina