Cargando…
Estimating the number of undetected COVID-19 cases among travellers from mainland China
Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477353/ https://www.ncbi.nlm.nih.gov/pubmed/34632083 http://dx.doi.org/10.12688/wellcomeopenres.15805.3 |
_version_ | 1784575824785047552 |
---|---|
author | Bhatia, Sangeeta Imai, Natsuko Cuomo-Dannenburg, Gina Baguelin, Marc Boonyasiri, Adhiratha Cori, Anne Cucunubá, Zulma Dorigatti, Ilaria FitzJohn, Rich Fu, Han Gaythorpe, Katy Ghani, Azra Hamlet, Arran Hinsley, Wes Laydon, Daniel Nedjati-Gilani, Gemma Okell, Lucy Riley, Steven Thompson, Hayley van Elsland, Sabine Volz, Erik Wang, Haowei Wang, Yuanrong Whittaker, Charles Xi, Xiaoyue Donnelly, Christl A. Ferguson, Neil M. |
author_facet | Bhatia, Sangeeta Imai, Natsuko Cuomo-Dannenburg, Gina Baguelin, Marc Boonyasiri, Adhiratha Cori, Anne Cucunubá, Zulma Dorigatti, Ilaria FitzJohn, Rich Fu, Han Gaythorpe, Katy Ghani, Azra Hamlet, Arran Hinsley, Wes Laydon, Daniel Nedjati-Gilani, Gemma Okell, Lucy Riley, Steven Thompson, Hayley van Elsland, Sabine Volz, Erik Wang, Haowei Wang, Yuanrong Whittaker, Charles Xi, Xiaoyue Donnelly, Christl A. Ferguson, Neil M. |
author_sort | Bhatia, Sangeeta |
collection | PubMed |
description | Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries. Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world. These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China. |
format | Online Article Text |
id | pubmed-8477353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-84773532021-10-07 Estimating the number of undetected COVID-19 cases among travellers from mainland China Bhatia, Sangeeta Imai, Natsuko Cuomo-Dannenburg, Gina Baguelin, Marc Boonyasiri, Adhiratha Cori, Anne Cucunubá, Zulma Dorigatti, Ilaria FitzJohn, Rich Fu, Han Gaythorpe, Katy Ghani, Azra Hamlet, Arran Hinsley, Wes Laydon, Daniel Nedjati-Gilani, Gemma Okell, Lucy Riley, Steven Thompson, Hayley van Elsland, Sabine Volz, Erik Wang, Haowei Wang, Yuanrong Whittaker, Charles Xi, Xiaoyue Donnelly, Christl A. Ferguson, Neil M. Wellcome Open Res Research Article Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide. Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries. Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries. Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world. These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China. F1000 Research Limited 2021-12-06 /pmc/articles/PMC8477353/ /pubmed/34632083 http://dx.doi.org/10.12688/wellcomeopenres.15805.3 Text en Copyright: © 2021 Bhatia S et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bhatia, Sangeeta Imai, Natsuko Cuomo-Dannenburg, Gina Baguelin, Marc Boonyasiri, Adhiratha Cori, Anne Cucunubá, Zulma Dorigatti, Ilaria FitzJohn, Rich Fu, Han Gaythorpe, Katy Ghani, Azra Hamlet, Arran Hinsley, Wes Laydon, Daniel Nedjati-Gilani, Gemma Okell, Lucy Riley, Steven Thompson, Hayley van Elsland, Sabine Volz, Erik Wang, Haowei Wang, Yuanrong Whittaker, Charles Xi, Xiaoyue Donnelly, Christl A. Ferguson, Neil M. Estimating the number of undetected COVID-19 cases among travellers from mainland China |
title | Estimating the number of undetected COVID-19 cases among travellers from mainland China |
title_full | Estimating the number of undetected COVID-19 cases among travellers from mainland China |
title_fullStr | Estimating the number of undetected COVID-19 cases among travellers from mainland China |
title_full_unstemmed | Estimating the number of undetected COVID-19 cases among travellers from mainland China |
title_short | Estimating the number of undetected COVID-19 cases among travellers from mainland China |
title_sort | estimating the number of undetected covid-19 cases among travellers from mainland china |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477353/ https://www.ncbi.nlm.nih.gov/pubmed/34632083 http://dx.doi.org/10.12688/wellcomeopenres.15805.3 |
work_keys_str_mv | AT bhatiasangeeta estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT imainatsuko estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT cuomodannenburggina estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT baguelinmarc estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT boonyasiriadhiratha estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT corianne estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT cucunubazulma estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT dorigattiilaria estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT fitzjohnrich estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT fuhan estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT gaythorpekaty estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT ghaniazra estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT hamletarran estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT hinsleywes estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT laydondaniel estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT nedjatigilanigemma estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT okelllucy estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT rileysteven estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT thompsonhayley estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT vanelslandsabine estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT volzerik estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT wanghaowei estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT wangyuanrong estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT whittakercharles estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT xixiaoyue estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT donnellychristla estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina AT fergusonneilm estimatingthenumberofundetectedcovid19casesamongtravellersfrommainlandchina |