Cargando…
Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation
PURPOSE: To investigate the effect of the combination of Wharton's jelly derived mesenchymal stem cells (WJ-MSC) and high frequency repetitive electromagnetic stimulation (rEMS) in the therapy of toxic optic neuropathies with severe symptoms after the available current therapy modalities which...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477499/ https://www.ncbi.nlm.nih.gov/pubmed/34579767 http://dx.doi.org/10.1186/s13287-021-02577-2 |
_version_ | 1784575855210528768 |
---|---|
author | Özmert, Emin Arslan, Umut |
author_facet | Özmert, Emin Arslan, Umut |
author_sort | Özmert, Emin |
collection | PubMed |
description | PURPOSE: To investigate the effect of the combination of Wharton's jelly derived mesenchymal stem cells (WJ-MSC) and high frequency repetitive electromagnetic stimulation (rEMS) in the therapy of toxic optic neuropathies with severe symptoms after the available current therapy modalities which were unsucessful. MATERIAL AND METHODS: This prospective, open-label clinical phase-3 study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology between April 2019 and April 2021. Thirty-six eyes of 18 patients with toxic optic neuropathy (TON) were included in the study. Within 1–3 months after the emergency interventions, patients with various degrees of sequela visual disturbances were studied in this clinical trial. The cases were divided into three groups according to similar demographic characteristics. Group 1: Consists of 12 eyes of 12 patients treated with the WJ-MSC and rEMS combination in one eye. Group 2: Consists of 12 eyes of 12 patients treated with only rEMS in one eye. Group 3: Consists of 12 eyes of six patients treated with only WJ-MSC in both eyes. The course was evaluated by comparing the quantitive functional and structural assessment parameters measured before and at the fourth month of applications in each group. RESULTS: The mean best corrected visual acuity (BCVA) delta change percentages of the groups can be ranked as: Group 1 (47%) > Group 3 (32%) > Group 2 (21%). The mean fundus perimetry deviation index (FPDI) delta change percentages of the groups can be ranked as: Group 1 (95%) > Group 2 (33%) > Group 3 (27%). The mean ganglion cell complex (GCC) thickness delta change (decrease in thickness) percentages can be ranked as: Group 1 (− 21%) > Group 3 (− 15%) > Group 2 (− 13%). The visual evoked potential (VEP) P100 latency delta change percentages of the groups can be ranked as: Group 1 (− 18%) > Group 3 (− 10%) > Group 2 (− 8%). The P100 amplitude delta change percentages of the groups can be ranked as: Group 1 (105%) > Group 3 (83%) > Group 2 (24%). CONCLUSION: Toxic optic neuropathies are emergent pathologies that can result in acute and permanent blindness. After poisoning with toxic substances, progressive apoptosis continues in optic nerve axons and ganglion cells. After the proper first systemic intervention in intensive care clinic, the WJ-MSC and rEMS combination seems very effective in the short-term period in cases with TON. To prevent permanent blindness, a combination of WJ-MSC and rEMS application as soon as possible may increase the chance of success in currently untreatable cases. Trial Registration ClinicalTrials.gov ID: NCT04877067. |
format | Online Article Text |
id | pubmed-8477499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-84774992021-09-28 Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation Özmert, Emin Arslan, Umut Stem Cell Res Ther Research PURPOSE: To investigate the effect of the combination of Wharton's jelly derived mesenchymal stem cells (WJ-MSC) and high frequency repetitive electromagnetic stimulation (rEMS) in the therapy of toxic optic neuropathies with severe symptoms after the available current therapy modalities which were unsucessful. MATERIAL AND METHODS: This prospective, open-label clinical phase-3 study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology between April 2019 and April 2021. Thirty-six eyes of 18 patients with toxic optic neuropathy (TON) were included in the study. Within 1–3 months after the emergency interventions, patients with various degrees of sequela visual disturbances were studied in this clinical trial. The cases were divided into three groups according to similar demographic characteristics. Group 1: Consists of 12 eyes of 12 patients treated with the WJ-MSC and rEMS combination in one eye. Group 2: Consists of 12 eyes of 12 patients treated with only rEMS in one eye. Group 3: Consists of 12 eyes of six patients treated with only WJ-MSC in both eyes. The course was evaluated by comparing the quantitive functional and structural assessment parameters measured before and at the fourth month of applications in each group. RESULTS: The mean best corrected visual acuity (BCVA) delta change percentages of the groups can be ranked as: Group 1 (47%) > Group 3 (32%) > Group 2 (21%). The mean fundus perimetry deviation index (FPDI) delta change percentages of the groups can be ranked as: Group 1 (95%) > Group 2 (33%) > Group 3 (27%). The mean ganglion cell complex (GCC) thickness delta change (decrease in thickness) percentages can be ranked as: Group 1 (− 21%) > Group 3 (− 15%) > Group 2 (− 13%). The visual evoked potential (VEP) P100 latency delta change percentages of the groups can be ranked as: Group 1 (− 18%) > Group 3 (− 10%) > Group 2 (− 8%). The P100 amplitude delta change percentages of the groups can be ranked as: Group 1 (105%) > Group 3 (83%) > Group 2 (24%). CONCLUSION: Toxic optic neuropathies are emergent pathologies that can result in acute and permanent blindness. After poisoning with toxic substances, progressive apoptosis continues in optic nerve axons and ganglion cells. After the proper first systemic intervention in intensive care clinic, the WJ-MSC and rEMS combination seems very effective in the short-term period in cases with TON. To prevent permanent blindness, a combination of WJ-MSC and rEMS application as soon as possible may increase the chance of success in currently untreatable cases. Trial Registration ClinicalTrials.gov ID: NCT04877067. BioMed Central 2021-09-27 /pmc/articles/PMC8477499/ /pubmed/34579767 http://dx.doi.org/10.1186/s13287-021-02577-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Özmert, Emin Arslan, Umut Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
title | Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
title_full | Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
title_fullStr | Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
title_full_unstemmed | Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
title_short | Management of toxic optic neuropathy via a combination of Wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
title_sort | management of toxic optic neuropathy via a combination of wharton’s jelly-derived mesenchymal stem cells with electromagnetic stimulation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477499/ https://www.ncbi.nlm.nih.gov/pubmed/34579767 http://dx.doi.org/10.1186/s13287-021-02577-2 |
work_keys_str_mv | AT ozmertemin managementoftoxicopticneuropathyviaacombinationofwhartonsjellyderivedmesenchymalstemcellswithelectromagneticstimulation AT arslanumut managementoftoxicopticneuropathyviaacombinationofwhartonsjellyderivedmesenchymalstemcellswithelectromagneticstimulation |