Cargando…
Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer
BACKGROUND: Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the disease and potentially reveal new avenues for treatment. Transcriptome pro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477508/ https://www.ncbi.nlm.nih.gov/pubmed/34579762 http://dx.doi.org/10.1186/s13058-021-01468-x |
_version_ | 1784575857009885184 |
---|---|
author | Ionkina, Anastasia A. Balderrama-Gutierrez, Gabriela Ibanez, Krystian J. Phan, Steve Huy D. Cortez, Angelique N. Mortazavi, Ali Prescher, Jennifer A. |
author_facet | Ionkina, Anastasia A. Balderrama-Gutierrez, Gabriela Ibanez, Krystian J. Phan, Steve Huy D. Cortez, Angelique N. Mortazavi, Ali Prescher, Jennifer A. |
author_sort | Ionkina, Anastasia A. |
collection | PubMed |
description | BACKGROUND: Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the disease and potentially reveal new avenues for treatment. Transcriptome profiling of spontaneous cancer models is an attractive method to examine the dynamic changes accompanying tumor cell spread. However, such studies are complicated by the underlying heterogeneity of the cell types involved. The purpose of this study was to examine the transcriptomes of metastatic breast cancer cells using the well-established MMTV-PyMT mouse model. METHODS: Organ-derived metastatic cell lines were harvested from 10 female MMTV-PyMT mice. Cancer cells were isolated and sorted based on the expression of CD44(low)/EpCAM(high) or CD44(high)/EpCAM(high) surface markers. RNA from each cell line was extracted and sequenced using the NextSeq 500 Illumina platform. Tissue-specific genes were compared across the different metastatic and primary tumor samples. Reads were mapped to the mouse genome using STAR, and gene expression was quantified using RSEM. Single-cell RNA-seq (scRNA-seq) was performed on select samples using the ddSeq platform by BioRad and analyzed using Seurat v3.2.3. Monocle2 was used to infer pseudo-time progression. RESULTS: Comparison of RNA sequencing data across all cell populations produced distinct gene clusters. Differential gene expression patterns related to CD44 expression, organ tropism, and immunomodulatory signatures were observed. scRNA-seq identified expression profiles based on tissue-dependent niches and clonal heterogeneity. These cohorts of data were narrowed down to identify subsets of genes with high expression and known metastatic propensity. Dot plot analyses further revealed clusters expressing cancer stem cell and cancer dormancy markers. Changes in relevant genes were investigated across pseudo-time and tissue origin using Monocle2. These data revealed transcriptomes that may contribute to sub-clonal evolution and treatment evasion during cancer progression. CONCLUSIONS: We performed a comprehensive transcriptome analysis of tumor heterogeneity and organ tropism during breast cancer metastasis. These data add to our understanding of metastatic progression and highlight targets for breast cancer treatment. These markers could also be used to image the impact of tumor heterogeneity on metastases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-021-01468-x. |
format | Online Article Text |
id | pubmed-8477508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-84775082021-09-28 Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer Ionkina, Anastasia A. Balderrama-Gutierrez, Gabriela Ibanez, Krystian J. Phan, Steve Huy D. Cortez, Angelique N. Mortazavi, Ali Prescher, Jennifer A. Breast Cancer Res Research Article BACKGROUND: Cancer metastasis is a complex process involving the spread of malignant cells from a primary tumor to distal organs. Understanding this cascade at a mechanistic level could provide critical new insights into the disease and potentially reveal new avenues for treatment. Transcriptome profiling of spontaneous cancer models is an attractive method to examine the dynamic changes accompanying tumor cell spread. However, such studies are complicated by the underlying heterogeneity of the cell types involved. The purpose of this study was to examine the transcriptomes of metastatic breast cancer cells using the well-established MMTV-PyMT mouse model. METHODS: Organ-derived metastatic cell lines were harvested from 10 female MMTV-PyMT mice. Cancer cells were isolated and sorted based on the expression of CD44(low)/EpCAM(high) or CD44(high)/EpCAM(high) surface markers. RNA from each cell line was extracted and sequenced using the NextSeq 500 Illumina platform. Tissue-specific genes were compared across the different metastatic and primary tumor samples. Reads were mapped to the mouse genome using STAR, and gene expression was quantified using RSEM. Single-cell RNA-seq (scRNA-seq) was performed on select samples using the ddSeq platform by BioRad and analyzed using Seurat v3.2.3. Monocle2 was used to infer pseudo-time progression. RESULTS: Comparison of RNA sequencing data across all cell populations produced distinct gene clusters. Differential gene expression patterns related to CD44 expression, organ tropism, and immunomodulatory signatures were observed. scRNA-seq identified expression profiles based on tissue-dependent niches and clonal heterogeneity. These cohorts of data were narrowed down to identify subsets of genes with high expression and known metastatic propensity. Dot plot analyses further revealed clusters expressing cancer stem cell and cancer dormancy markers. Changes in relevant genes were investigated across pseudo-time and tissue origin using Monocle2. These data revealed transcriptomes that may contribute to sub-clonal evolution and treatment evasion during cancer progression. CONCLUSIONS: We performed a comprehensive transcriptome analysis of tumor heterogeneity and organ tropism during breast cancer metastasis. These data add to our understanding of metastatic progression and highlight targets for breast cancer treatment. These markers could also be used to image the impact of tumor heterogeneity on metastases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-021-01468-x. BioMed Central 2021-09-27 2021 /pmc/articles/PMC8477508/ /pubmed/34579762 http://dx.doi.org/10.1186/s13058-021-01468-x Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Ionkina, Anastasia A. Balderrama-Gutierrez, Gabriela Ibanez, Krystian J. Phan, Steve Huy D. Cortez, Angelique N. Mortazavi, Ali Prescher, Jennifer A. Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
title | Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
title_full | Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
title_fullStr | Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
title_full_unstemmed | Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
title_short | Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
title_sort | transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477508/ https://www.ncbi.nlm.nih.gov/pubmed/34579762 http://dx.doi.org/10.1186/s13058-021-01468-x |
work_keys_str_mv | AT ionkinaanastasiaa transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer AT balderramagutierrezgabriela transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer AT ibanezkrystianj transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer AT phanstevehuyd transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer AT cortezangeliquen transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer AT mortazaviali transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer AT prescherjennifera transcriptomeanalysisofheterogeneityinmousemodelofmetastaticbreastcancer |