Cargando…

How can SHAP values help to shape metabolic stability of chemical compounds?

BACKGROUND: Computational methods support nowadays each stage of drug design campaigns. They assist not only in the process of identification of new active compounds towards particular biological target, but also help in the evaluation and optimization of their physicochemical and pharmacokinetic pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wojtuch, Agnieszka, Jankowski, Rafał, Podlewska, Sabina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477573/
https://www.ncbi.nlm.nih.gov/pubmed/34579792
http://dx.doi.org/10.1186/s13321-021-00542-y
_version_ 1784575871923781632
author Wojtuch, Agnieszka
Jankowski, Rafał
Podlewska, Sabina
author_facet Wojtuch, Agnieszka
Jankowski, Rafał
Podlewska, Sabina
author_sort Wojtuch, Agnieszka
collection PubMed
description BACKGROUND: Computational methods support nowadays each stage of drug design campaigns. They assist not only in the process of identification of new active compounds towards particular biological target, but also help in the evaluation and optimization of their physicochemical and pharmacokinetic properties. Such features are not less important in terms of the possible turn of a compound into a future drug than its desired affinity profile towards considered proteins. In the study, we focus on metabolic stability, which determines the time that the compound can act in the organism and play its role as a drug. Due to great complexity of xenobiotic transformation pathways in the living organisms, evaluation and optimization of metabolic stability remains a big challenge. RESULTS: Here, we present a novel methodology for the evaluation and analysis of structural features influencing metabolic stability. To this end, we use a well-established explainability method called SHAP. We built several predictive models and analyse their predictions with the SHAP values to reveal how particular compound substructures influence the model’s prediction. The method can be widely applied by users thanks to the web service, which accompanies the article. It allows a detailed analysis of SHAP values obtained for compounds from the ChEMBL database, as well as their determination and analysis for any compound submitted by a user. Moreover, the service enables manual analysis of the possible structural modifications via the provision of analogous analysis for the most similar compound from the ChEMBL dataset. CONCLUSIONS: To our knowledge, this is the first attempt to employ SHAP to reveal which substructural features are utilized by machine learning models when evaluating compound metabolic stability. The accompanying web service for metabolic stability evaluation can be of great help for medicinal chemists. Its significant usefulness is related not only to the possibility of assessing compound stability, but also to the provision of information about substructures influencing this parameter. It can assist in the design of new ligands with improved metabolic stability, helping in the detection of privileged and unfavourable chemical moieties during stability optimization. The tool is available at https://metstab-shap.matinf.uj.edu.pl/.
format Online
Article
Text
id pubmed-8477573
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-84775732021-09-29 How can SHAP values help to shape metabolic stability of chemical compounds? Wojtuch, Agnieszka Jankowski, Rafał Podlewska, Sabina J Cheminform Research Article BACKGROUND: Computational methods support nowadays each stage of drug design campaigns. They assist not only in the process of identification of new active compounds towards particular biological target, but also help in the evaluation and optimization of their physicochemical and pharmacokinetic properties. Such features are not less important in terms of the possible turn of a compound into a future drug than its desired affinity profile towards considered proteins. In the study, we focus on metabolic stability, which determines the time that the compound can act in the organism and play its role as a drug. Due to great complexity of xenobiotic transformation pathways in the living organisms, evaluation and optimization of metabolic stability remains a big challenge. RESULTS: Here, we present a novel methodology for the evaluation and analysis of structural features influencing metabolic stability. To this end, we use a well-established explainability method called SHAP. We built several predictive models and analyse their predictions with the SHAP values to reveal how particular compound substructures influence the model’s prediction. The method can be widely applied by users thanks to the web service, which accompanies the article. It allows a detailed analysis of SHAP values obtained for compounds from the ChEMBL database, as well as their determination and analysis for any compound submitted by a user. Moreover, the service enables manual analysis of the possible structural modifications via the provision of analogous analysis for the most similar compound from the ChEMBL dataset. CONCLUSIONS: To our knowledge, this is the first attempt to employ SHAP to reveal which substructural features are utilized by machine learning models when evaluating compound metabolic stability. The accompanying web service for metabolic stability evaluation can be of great help for medicinal chemists. Its significant usefulness is related not only to the possibility of assessing compound stability, but also to the provision of information about substructures influencing this parameter. It can assist in the design of new ligands with improved metabolic stability, helping in the detection of privileged and unfavourable chemical moieties during stability optimization. The tool is available at https://metstab-shap.matinf.uj.edu.pl/. Springer International Publishing 2021-09-27 /pmc/articles/PMC8477573/ /pubmed/34579792 http://dx.doi.org/10.1186/s13321-021-00542-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Wojtuch, Agnieszka
Jankowski, Rafał
Podlewska, Sabina
How can SHAP values help to shape metabolic stability of chemical compounds?
title How can SHAP values help to shape metabolic stability of chemical compounds?
title_full How can SHAP values help to shape metabolic stability of chemical compounds?
title_fullStr How can SHAP values help to shape metabolic stability of chemical compounds?
title_full_unstemmed How can SHAP values help to shape metabolic stability of chemical compounds?
title_short How can SHAP values help to shape metabolic stability of chemical compounds?
title_sort how can shap values help to shape metabolic stability of chemical compounds?
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477573/
https://www.ncbi.nlm.nih.gov/pubmed/34579792
http://dx.doi.org/10.1186/s13321-021-00542-y
work_keys_str_mv AT wojtuchagnieszka howcanshapvalueshelptoshapemetabolicstabilityofchemicalcompounds
AT jankowskirafał howcanshapvalueshelptoshapemetabolicstabilityofchemicalcompounds
AT podlewskasabina howcanshapvalueshelptoshapemetabolicstabilityofchemicalcompounds