Cargando…

NF-κB/IκBα signaling pathways are essential for resistance to heat stress-induced ROS production in pulmonary microvascular endothelial cells

The results of a previous study demonstrated that heat stress (HS) triggered oxidative stress, which in turn induced the apoptosis of epithelial cells. These results uncovered a novel mechanism underlying the activation of NF-κB in primary human umbilical vein endothelial cells. The present study ai...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Weidang, Huang, Wei, Cai, Shumin, Chen, Hui, Fu, Weijun, Chen, Zhongqing, Liu, Yanan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477608/
https://www.ncbi.nlm.nih.gov/pubmed/34558646
http://dx.doi.org/10.3892/mmr.2021.12454
Descripción
Sumario:The results of a previous study demonstrated that heat stress (HS) triggered oxidative stress, which in turn induced the apoptosis of epithelial cells. These results uncovered a novel mechanism underlying the activation of NF-κB in primary human umbilical vein endothelial cells. The present study aimed to further investigate the role of NF-κB/IκBα signaling pathways in the inhibition of HS-induced reactive oxygen species (ROS) generation and cytotoxicity in endothelial cells. The results of the present study demonstrated that HS triggered a significant amount of NF-κB and IκBα nuclear translocation without IκBα degradation in a time-dependent manner. Mutant constructs of IκBα phosphorylation sites (Ser32, Ser36) were employed in rat pulmonary microvascular endothelial cells (PMVECs). Cell Counting Kit-8 assays demonstrated that both the small interfering (si)RNA-mediated knockdown of p65 and IκBα mutant constructs significantly decreased cell viability and aggravated ROS accumulation in HS-induced rat PMVECs compared with the control. Additionally, western blot analysis revealed that p65 siRNA attenuated the protein expression of IκBα. However, IκBα mutant constructs failed to attenuate NF-κB activation and nuclear translocation, indicating that IκBα-independent pathways contributed to NF-κB activity and nucleus translocation in a time-dependent manner following HS. Collectively, the results of the present study suggested that the NF-κB/IκBα pathway was essential for resistance to HS-induced ROS production and cytotoxicity in rat PMVECs, and that it could be a potential therapeutic target to reduce the mortality and morbidity of heat stroke.