Cargando…
A fast algorithm to find reduced hyperplane unit cells and solve N-dimensional Bézout’s identities
Deformation twinning on a plane is a simple shear that transforms a unit cell attached to the plane into another unit cell equivalent by mirror symmetry or 180° rotation. Thus, crystallographic models of twinning require the determination of the short unit cells attached to the planes, or hyperplane...
Autor principal: | Cayron, Cyril |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477640/ https://www.ncbi.nlm.nih.gov/pubmed/34473098 http://dx.doi.org/10.1107/S2053273321006835 |
Ejemplares similares
-
Residue currents and Bezout identities
por: Berenstein, Carlos A, et al.
Publicado: (1993) -
Locating lines and hyperplanes: theory and algorithms
por: Schöbel, Anita
Publicado: (1999) -
Arrangements of hyperplanes
por: Orlik, Peter, et al.
Publicado: (1992) -
Topics in hyperplane arrangements
por: Aguiar, Marcelo, et al.
Publicado: (2017) -
Hyperplane arrangements: an introduction
por: Dimca, Alexandru
Publicado: (2017)