Cargando…
Reconstruction of cardiovascular black-blood T2-weighted image by deep learning algorithm: A comparison with intensity filter
BACKGROUND: Deep learning–based methods have been used to denoise magnetic resonance imaging. PURPOSE: The purpose of this study was to evaluate a deep learning reconstruction (DL Recon) in cardiovascular black-blood T2-weighted images and compare with intensity filtered images. MATERIAL AND METHODS...
Autores principales: | Ogawa, Ryo, Kido, Tomoyuki, Nakamura, Masashi, Nozaki, Atsushi, Lebel, R Marc, Mochizuki, Teruhito, Kido, Teruhito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477702/ https://www.ncbi.nlm.nih.gov/pubmed/34594576 http://dx.doi.org/10.1177/20584601211044779 |
Ejemplares similares
-
Quantitative circumferential strain analysis using 3-Tesla feature-tracking cardiovascular magnetic resonance in patients with old myocardial infarction
por: Ogawa, Ryo, et al.
Publicado: (2016) -
T1 mapping using a saturation recovery single-shot acquisition at 3 Tesla MRI in differentiation of normal myocardium from hypertrophic cardiomyopathy
por: Ogawa, Ryo, et al.
Publicado: (2016) -
Quantitative circumferential strain analysis using ATP-stress/rest 3-Tesla tagged magnetic resonance to evaluate regional contractile dysfunction in ischemic heart disease
por: Nakamura, Masashi, et al.
Publicado: (2015) -
Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold
por: Kido, Tomoyuki, et al.
Publicado: (2016) -
What is the mid-wall linear high intensity “lesion” on cardiovascular magnetic resonance late gadolinium enhancement?
por: Nakamura, Masashi, et al.
Publicado: (2020)