Cargando…
Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons in situ
The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8477906/ https://www.ncbi.nlm.nih.gov/pubmed/34582125 http://dx.doi.org/10.14814/phy2.15056 |
Sumario: | The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole‐mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were −47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after‐hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high‐frequency repetitive nerve stimulation up to at least 50 Hz. Nerve‐evoked synaptic transmission was blocked by extracellular Cd(2+), ω‐conotoxin CVIE, or α‐conotoxin RegIIA, a selective α3‐containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function. |
---|