Cargando…
On Consensus-Optimality Trade-offs in Collaborative Deep Learning
In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality. In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-off...
Autores principales: | Jiang, Zhanhong, Balu, Aditya, Hegde, Chinmay, Sarkar, Soumik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478077/ https://www.ncbi.nlm.nih.gov/pubmed/34595470 http://dx.doi.org/10.3389/frai.2021.573731 |
Ejemplares similares
-
Adversarially Robust Learning via Entropic Regularization
por: Jagatap, Gauri, et al.
Publicado: (2022) -
Asynchronous Deep Double Dueling Q-learning for trading-signal execution in limit order book markets
por: Nagy, Peer, et al.
Publicado: (2023) -
Latent based temporal optimization approach for improving the performance of collaborative filtering
por: Al-Hadi, Ismail Ahmed Al-Qasem, et al.
Publicado: (2020) -
QF-TraderNet: Intraday Trading via Deep Reinforcement With Quantum Price Levels Based Profit-And-Loss Control
por: Qiu, Yifu, et al.
Publicado: (2021) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023)