Cargando…
Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states
Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478196/ https://www.ncbi.nlm.nih.gov/pubmed/34529655 http://dx.doi.org/10.1371/journal.pcbi.1009416 |
_version_ | 1784576002733637632 |
---|---|
author | Susin, Eduarda Destexhe, Alain |
author_facet | Susin, Eduarda Destexhe, Alain |
author_sort | Susin, Eduarda |
collection | PubMed |
description | Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network models of Gamma oscillations, based on different cell types found in cerebral cortex. The models were adjusted to extracellular unit recordings in humans, where Gamma oscillations always coexist with the asynchronous firing mode. We considered three different mechanisms to generate Gamma, first a mechanism based on the interaction between pyramidal neurons and interneurons (PING), second a mechanism in which Gamma is generated by interneuron networks (ING) and third, a mechanism which relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We find that all three mechanisms generate features consistent with human recordings, but that the ING mechanism is most consistent with the firing rate change inside Gamma bursts seen in the human data. We next evaluated the responsiveness and resonant properties of these networks, contrasting Gamma oscillations with the asynchronous mode. We find that for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma compared to asynchronous states, while resonant properties are similar around the Gamma band. We could not find conditions where Gamma oscillations were more responsive. We therefore predict that asynchronous states provide the highest responsiveness to external stimuli, while Gamma oscillations tend to overall diminish responsiveness. |
format | Online Article Text |
id | pubmed-8478196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84781962021-09-29 Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states Susin, Eduarda Destexhe, Alain PLoS Comput Biol Research Article Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network models of Gamma oscillations, based on different cell types found in cerebral cortex. The models were adjusted to extracellular unit recordings in humans, where Gamma oscillations always coexist with the asynchronous firing mode. We considered three different mechanisms to generate Gamma, first a mechanism based on the interaction between pyramidal neurons and interneurons (PING), second a mechanism in which Gamma is generated by interneuron networks (ING) and third, a mechanism which relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We find that all three mechanisms generate features consistent with human recordings, but that the ING mechanism is most consistent with the firing rate change inside Gamma bursts seen in the human data. We next evaluated the responsiveness and resonant properties of these networks, contrasting Gamma oscillations with the asynchronous mode. We find that for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma compared to asynchronous states, while resonant properties are similar around the Gamma band. We could not find conditions where Gamma oscillations were more responsive. We therefore predict that asynchronous states provide the highest responsiveness to external stimuli, while Gamma oscillations tend to overall diminish responsiveness. Public Library of Science 2021-09-16 /pmc/articles/PMC8478196/ /pubmed/34529655 http://dx.doi.org/10.1371/journal.pcbi.1009416 Text en © 2021 Susin, Destexhe https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Susin, Eduarda Destexhe, Alain Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states |
title | Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states |
title_full | Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states |
title_fullStr | Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states |
title_full_unstemmed | Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states |
title_short | Integration, coincidence detection and resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous states |
title_sort | integration, coincidence detection and resonance in networks of spiking neurons expressing gamma oscillations and asynchronous states |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478196/ https://www.ncbi.nlm.nih.gov/pubmed/34529655 http://dx.doi.org/10.1371/journal.pcbi.1009416 |
work_keys_str_mv | AT susineduarda integrationcoincidencedetectionandresonanceinnetworksofspikingneuronsexpressinggammaoscillationsandasynchronousstates AT destexhealain integrationcoincidencedetectionandresonanceinnetworksofspikingneuronsexpressinggammaoscillationsandasynchronousstates |