Cargando…

Effects of bronchial thermoplasty and cryoablation on airway smooth muscle

BACKGROUND: The effectiveness of bronchial thermoplasty (BT) has been reported in patients with severe asthma. This study compared the effects of BT and cryoballoon ablation (CBA) therapy on the airway smooth muscle (ASM). METHODS: Eight healthy male beagle dogs were included in this experiment. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xuan, Xie, Shuan-Shuan, Li, Guo-Shu, Zeng, Jie, Duan, Hong-Xia, Wang, Chang-Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478401/
https://www.ncbi.nlm.nih.gov/pubmed/34553699
http://dx.doi.org/10.1097/CM9.0000000000001681
Descripción
Sumario:BACKGROUND: The effectiveness of bronchial thermoplasty (BT) has been reported in patients with severe asthma. This study compared the effects of BT and cryoballoon ablation (CBA) therapy on the airway smooth muscle (ASM). METHODS: Eight healthy male beagle dogs were included in this experiment. In the preliminary experiment, one dog received BT treatment for both lower lobe bronchus, another dog received CBA treatment for 7 s on the upper and lower lobe of right bronchus, and 30 s on the left upper and lower lobe. The treatments were performed twice at an interval of 1 month. In subsequent experiments, the right lower lobe bronchus was treated with BT, and the left lower lobe bronchus was treated with CBA. The effects of treatment were observed after 1 (n = 3) month and 6 months (n = 3). Hematoxylin-eosin staining, Masson trichrome staining, and immunohistochemical staining were used to compare the effects of BT and CBA therapy on the ASM thickness, collagen fibers synthesis, and M3 receptor expression after treatment. One-way analysis of variance with Dunnett post hoc test was used to analyze the differences among groups. RESULTS: In the preliminary experiment, the ASM ablation effect of 30-s CBA was equivalent to that of 7-s CBA (ASM thickness: 30.52 ± 7.75 μm vs. 17.57 ± 15.20 μm, P = 0.128), but the bronchial mucociliary epithelium did not recover, and large numbers of inflammatory cells had infiltrated the mucosal epithelium at 1-month post-CBA with 30-s freezing. Therefore, we chose 7 s as the CBA treatment time in our follow-up experiments. Compared with the control group (35.81 ± 11.02 μm), BT group and CBA group (13.41 ± 4.40 μm and 4.81 ± 4.44 μm, respectively) had significantly decreased ASM thickness after 1 month (P < 0.001). Furthermore, the ASM thickness was significantly lower in the 1-month post-CBA group than in the 1-month post-BT group (P = 0.015). There was no significant difference in ASM thickness between the BT and CBA groups after six months (9.92 ± 4.42 μm vs. 7.41 ± 7.20 μm, P = 0.540). Compared with the control group (0.161 ± 0.013), the average optical density of the ASM M3 receptor was significantly decreased in 6-month post-BT, 1-month post-CBA, and 6-month post-CBA groups (0.070 ± 0.022, 0.072 ± 0.012, 0.074 ± 0.008, respectively; all P < 0.001). There was no significant difference in the average optical density of ASM M3 receptor between the BT and CBA therapy groups after six months (P = 0.613). CONCLUSIONS: CBA therapy effectively ablates the ASM, and its ablation effect is equivalent to that of BT with a shorter onset time. A neural mechanism is involved in both BT and CBA therapy.