Cargando…
Severity Assessment of COVID-19 Using a CT-Based Radiomics Model
The coronavirus disease of 2019 (COVID-19) has evolved into a worldwide pandemic. Although CT is sensitive in detecting lesions and assessing their severity, these works mainly depend on radiologists' subjective judgment, which is inefficient in case of a large-scale outbreak. This work focuses...
Autores principales: | Xu, Zhigao, Zhao, Lili, Yang, Guoqiang, Ren, Ying, Wu, Jinlong, Xia, Yuwei, Yang, Xuhong, Cao, Milan, Zhang, Guojiang, Peng, Taisong, Zhao, Jiafeng, Yang, Hui, Hu, Jinfeng, Du, Jiangfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478587/ https://www.ncbi.nlm.nih.gov/pubmed/34594383 http://dx.doi.org/10.1155/2021/2263469 |
Ejemplares similares
-
MRI-based machine learning model: A potential modality for predicting cognitive dysfunction in patients with type 2 diabetes mellitus
por: Xu, Zhigao, et al.
Publicado: (2022) -
A CT-based radiomics nomogram for predicting prognosis of coronavirus disease 2019 (COVID-19) radiomics nomogram predicting COVID-19
por: Chen, Hang, et al.
Publicado: (2021) -
A CT-Based Radiomics Approach for the Differential Diagnosis of Sarcomatoid and Clear Cell Renal Cell Carcinoma
por: Meng, Xiaoli, et al.
Publicado: (2020) -
CT-based radiomics models may predict the early efficacy of microwave ablation in malignant lung tumors
por: Zhu, Fandong, et al.
Publicado: (2023) -
CT radiomics nomogram for the preoperative prediction of severe post-hepatectomy liver failure in patients with huge (≥ 10 cm) hepatocellular carcinoma
por: Xiang, Fei, et al.
Publicado: (2021)