Cargando…
Preventing dataset shift from breaking machine-learning biomarkers
Machine learning brings the hope of finding new biomarkers extracted from cohorts with rich biomedical measurements. A good biomarker is one that gives reliable detection of the corresponding condition. However, biomarkers are often extracted from a cohort that differs from the target population. Su...
Autores principales: | Dockès, Jérôme, Varoquaux, Gaël, Poline, Jean-Baptiste |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478611/ https://www.ncbi.nlm.nih.gov/pubmed/34585237 http://dx.doi.org/10.1093/gigascience/giab055 |
Ejemplares similares
-
Comprehensive decoding mental processes from Web repositories of functional brain images
por: Menuet, Romuald, et al.
Publicado: (2022) -
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014) -
How machine learning is shaping cognitive neuroimaging
por: Varoquaux, Gael, et al.
Publicado: (2014) -
Machine learning patterns for neuroimaging-genetic studies in the cloud
por: Da Mota, Benoit, et al.
Publicado: (2014) -
Machine learning for medical imaging: methodological failures and recommendations for the future
por: Varoquaux, Gaël, et al.
Publicado: (2022)