Cargando…
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
Deep learning architectures such as variational autoencoders have revolutionized the analysis of transcriptomics data. However, the latent space of these variational autoencoders offers little to no interpretability. To provide further biological insights, we introduce a novel sparse Variational Aut...
Autores principales: | Seninge, Lucas, Anastopoulos, Ioannis, Ding, Hongxu, Stuart, Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478947/ https://www.ncbi.nlm.nih.gov/pubmed/34584103 http://dx.doi.org/10.1038/s41467-021-26017-0 |
Ejemplares similares
-
Prioritizing transcriptional factors in gene regulatory networks with PageRank
por: Ding, Hongxu, et al.
Publicado: (2020) -
Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures
por: Ding, Hongxu, et al.
Publicado: (2021) -
ProInfer: An interpretable protein inference tool leveraging on biological networks
por: Peng, Hui, et al.
Publicado: (2023) -
SCING: Inference of robust, interpretable gene regulatory networks from single cell and spatial transcriptomics
por: Littman, Russell, et al.
Publicado: (2023) -
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
por: Ding, Jiarui, et al.
Publicado: (2018)