Cargando…
Visual analytics tool for the interpretation of hidden states in recurrent neural networks
In this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an inpu...
Autores principales: | Garcia, Rafael, Munz, Tanja, Weiskopf, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479019/ https://www.ncbi.nlm.nih.gov/pubmed/34585277 http://dx.doi.org/10.1186/s42492-021-00090-0 |
Ejemplares similares
-
VisME: Visual Microsaccades Explorer
por: Munz, Tanja, et al.
Publicado: (2019) -
On the visual analytic intelligence of neural networks
por: Woźniak, Stanisław, et al.
Publicado: (2023) -
Fermionic wave functions from neural-network constrained hidden states
por: Robledo Moreno, Javier, et al.
Publicado: (2022) -
BiNA: A Visual Analytics Tool for Biological Network Data
por: Gerasch, Andreas, et al.
Publicado: (2014) -
A multi hidden recurrent neural network with a modified grey wolf optimizer
por: Rashid, Tarik A., et al.
Publicado: (2019)