Cargando…
Dynamic memory to alleviate catastrophic forgetting in continual learning with medical imaging
Medical imaging is a central part of clinical diagnosis and treatment guidance. Machine learning has increasingly gained relevance because it captures features of disease and treatment response that are relevant for therapeutic decision-making. In clinical practice, the continuous progress of image...
Autores principales: | Perkonigg, Matthias, Hofmanninger, Johannes, Herold, Christian J., Brink, James A., Pianykh, Oleg, Prosch, Helmut, Langs, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479083/ https://www.ncbi.nlm.nih.gov/pubmed/34584080 http://dx.doi.org/10.1038/s41467-021-25858-z |
Ejemplares similares
-
Correction to: Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma
por: Röhrich, Sebastian, et al.
Publicado: (2021) -
Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma
por: Röhrich, Sebastian, et al.
Publicado: (2021) -
Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem
por: Hofmanninger, Johannes, et al.
Publicado: (2020) -
Machine learning: from radiomics to discovery and routine
por: Langs, G., et al.
Publicado: (2018) -
Can sleep protect memories from catastrophic forgetting?
por: González, Oscar C, et al.
Publicado: (2020)