Cargando…
Iterative joint classifier and domain adaptation for visual transfer learning
Current available supervised classifiers cannot generalize across various domains due to distribution mismatch among them. Domain adaptation and transfer learning algorithms are proposed to tackle domain shift problem that originates from different data collection conditions. In this paper, we propo...
Autores principales: | Noori Saray, Shiva, Tahmoresnezhad, Jafar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479271/ https://www.ncbi.nlm.nih.gov/pubmed/34603538 http://dx.doi.org/10.1007/s13042-021-01428-z |
Ejemplares similares
-
A Subspace Based Transfer Joint Matching with Laplacian Regularization for Visual Domain Adaptation
por: Sanodiya, Rakesh Kumar, et al.
Publicado: (2020) -
Deep autoencoder based domain adaptation for transfer learning
por: Dev, Krishna, et al.
Publicado: (2022) -
Smell-Based Memory Training: Evidence of Olfactory Learning and Transfer to the Visual Domain
por: Olofsson, Jonas K, et al.
Publicado: (2020) -
Fast and Robust Visual Tracking with Few-Iteration Meta-Learning
por: Li, Zhenxin, et al.
Publicado: (2022) -
Lightweight Adaptation of Classifiers to Users and Contexts: Trends of the Emerging Domain
por: Vildjiounaite, Elena, et al.
Publicado: (2015)