Cargando…
TSMDA: Target and symptom-based computational model for miRNA-disease-association prediction
The emergence of high-throughput sequencing techniques has revealed a primary role of microRNAs (miRNAs) in a wide range of diseases, including cancers and neurodegenerative disorders. Understanding novel relationships between miRNAs and diseases can potentially unveil complex pathogenesis mechanism...
Autores principales: | Uthayopas, Korawich, de Sá, Alex G.C., Alavi, Azadeh, Pires, Douglas E.V., Ascher, David B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479276/ https://www.ncbi.nlm.nih.gov/pubmed/34631283 http://dx.doi.org/10.1016/j.omtn.2021.08.016 |
Ejemplares similares
-
Distinguishing between PTEN clinical phenotypes through mutation analysis
por: Portelli, Stephanie, et al.
Publicado: (2021) -
Kinact: a computational approach for predicting activating missense mutations in protein kinases
por: Rodrigues, Carlos HM, et al.
Publicado: (2018) -
DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach
por: Pires, Douglas E.V., et al.
Publicado: (2014) -
Computational Challenges in miRNA Target Predictions: To Be or Not to Be a True Target?
por: Barbato, Christian, et al.
Publicado: (2009) -
Computational Prediction of Rice (Oryza sativa) miRNA Targets
por: Archak, Sunil, et al.
Publicado: (2007)