Cargando…
Public Covid-19 X-ray datasets and their impact on model bias – A systematic review of a significant problem
Computer-aided-diagnosis and stratification of COVID-19 based on chest X-ray suffers from weak bias assessment and limited quality-control. Undetected bias induced by inappropriate use of datasets, and improper consideration of confounders prevents the translation of prediction models into clinical...
Autores principales: | Garcia Santa Cruz, Beatriz, Bossa, Matías Nicolás, Sölter, Jan, Husch, Andreas Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479314/ https://www.ncbi.nlm.nih.gov/pubmed/34597937 http://dx.doi.org/10.1016/j.media.2021.102225 |
Ejemplares similares
-
Bias Analysis on Public X-Ray Image Datasets of Pneumonia and COVID-19 Patients
Publicado: (2021) -
Machine learning models for diagnosis and prognosis of Parkinson's disease using brain imaging: general overview, main challenges, and future directions
por: Garcia Santa Cruz, Beatriz, et al.
Publicado: (2023) -
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
por: Álvarez-Rodríguez, Lorena, et al.
Publicado: (2022) -
Publication bias and the chase for statistical significance
por: Marín-Franch, Iván
Publicado: (2018) -
High-resolution X–ray diffraction datasets: Carbonates
por: Amao, Abduljamiu O., et al.
Publicado: (2022)